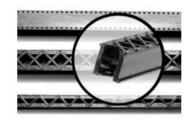


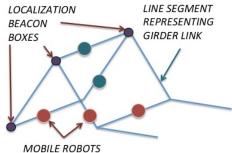
Designing semi-autonomous networks of miniature robots for inspection of bridges and other large infrastructures

- Richard La¹, Sarah Bergbreiter² and Nuno Martins¹ (UMD)
- Mehdi Kalantari Khandani (Resensys LLC)
- University of Maryland at College Park: ¹ECE, ²ME
- hyongla@umd.edu, nmartins@umd.edu, sarahb@isr.umd.edu, mehdi@resensys.com
- ECCS 1446785

Description

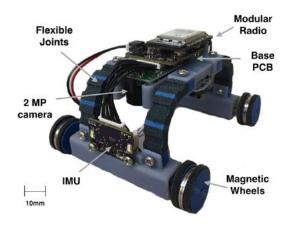

Create semi-autonomous robotic systems for inspection of large infrastructures.

US has 607,380 bridges, of which 65,605 are "structurally deficient."

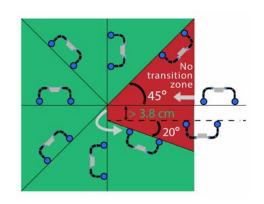

Main challenges:

- Mobility and communication. (Hardware)
- Coordination among and with semiautonomous assets.
 (Theory and algorithms)
- Allocation of human inspection tasks. (Theory and algorithms)

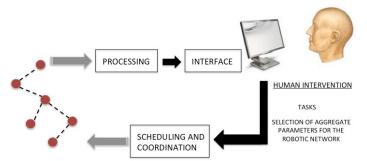
Collaborator: MD State Highway Administration



(a) Bending of a metal plate that was detected prior to the collapse.

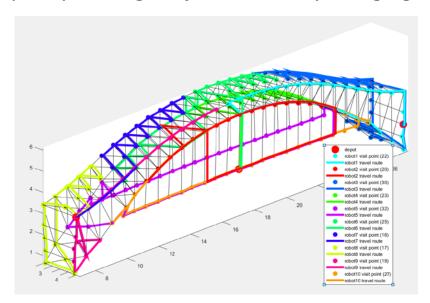

(b) Fracture that was later found to be a major cause of the collapse.

Findings



Magnetic robotic bridge explorer capable of navigating through sharp transitions and complex girders.

(prototype functional)


Algorithms and theory for scheduling subject to workload considerations.

Non-magnetic climbing: Electrostatic and vacuum. (preliminary)

Algorithms with complexity analysis for path planning subject to battery charging.

