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A Lightweight Smartphone Heterogeneity 
Resilient Portable Indoor Localization 

Framework
• Conducted an in-depth analysis of WiFi

fingerprinting across smartphones to 
emphasize the importance of device 
heterogeneity resilient indoor localization

• Designed a framework SHERPA for portable 
WiFi fingerprinting based indoor localization, 
which employs a lightweight software-based 
approach to combine noisy fingerprints over 
distinct smartphones and pattern 
matching/filtering to improve location accuracy

• Evaluated the framework against state-of-the-
art localization techniques, across a variety of 
Android-based smartphones

Research Thrusts
• Develop energy-efficient and error-tolerant indoor 

(underground) localization to locate individual miners 
and groups of miners

• Enable high quality voice streaming over low-power 
wireless networks

• Characterize wireless signal behavior with EM 
modeling

Challenges: 
• High cost of deploying safety infrastructure in 

underground mines encourages companies today to 
meet only the bare minimum required safeguards

• How to overcome monitoring, communication, and 
tracking challenges in the underground mines to 
realize a cost-effective safety infrastructure

Voice Convergecast in Mobile Low Power 
Wireless Networks
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Figure 3.1: Architecture of Mobile Voice Quality Aware System

Table 3.1: The values for ↵, �, and �

Codec Setting ↵ � � Relative Error
ADPCM-5bit 0.16 8.78 8.21 0.062
ADPCM-4bit 6.50 8.28 5.21 0.018
ADPCM-3bit 18.58 6.08 4.15 0.024
ADPCM-2bit 33.57 2.75 6.58 0.018

MOS =

8
><

>:

1; R < 0,

4.5; R > 100,

1 + 0.035R + 7 · 10�6R(R� 60)(100�R); otherwise.

(3.1)

In our system, we rely on the audience testing from QVS [5] to conclude that 50

equates to a 2.6 MOS value and is the appropriate threshold for satisfactory voice quality

for our system.

Cole and Rosenbluth [24] derive a simplified calculation for the R-value as R = R0 �
Id�Ie, where Id represents voice quality impairment due to delay and Ie represents quality

loss from from packet loss. R0 is the maximum R value as recommended by the E-Model

and corresponds to a MOS value of 4.41. To calculate Id and Ie, we use the equations in

[24] that were obtained through curve fitting:
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• Integrated routing and admission control
o Maximize number of admitted streams
o Key concept: quality of path (minimum 

number of contention domains affected on 
a path between a node and a sink)

o Multi-layer approach
o Deployed on Arduino Due and Xbee S1 
o 3 concurrent mobile streams can be 

supported

 
 

 

and the fact that we are using a simple transition matrix where the prob-
ability of the user moving in any direction is the same. Also, we do not 
utilize other motion sensors such as magnetic and gyroscope to identify 
situations where the user is changing directions [35]. However, even 
with this drawback SHERPA-HMM is able to meet our target accuracy 
of 2 meters across the board. 

The experiments performed in this work revealed that certain devices 
such as the low-cost BLU smartphone produce particularly noisy and 
inconsistent Wi-Fi RSSI measurements. Even though SHERPA-HMM 
attempts to minimize the impact of noise by taking into account multi-
ple Wi-Fi scans for each location prediction, users should be wary of 
the quality limitations of such low-cost devices, especially when using 
them for indoor localization and navigation.  
 

D. Comparison of Execution Times 
To highlight the lightweight design of our approach, we show the 

mean execution time of location predictions for SHERPA-HMM and 
prior work frameworks executing on the OP3 device. For brevity, re-
sults for only one path (Lib_Study) are shown. The specific path was 
chosen for this experiment as it was the largest one with 13,080 data 
points (60 meters × 218 WAPs) available. The OP3 device was ran-
domly chosen as we expect the overall trends of this experiment to re-
main the same across smartphones. 

The results of this experiment are shown in figure 9. The RBF tech-
nique is found to take over 2 seconds to execute. This behavior can be 
attributed to the fact that RBF requires sorting of Wi-Fi RSSI values 
for every scanned fingerprint in the testing phase, unlike any of the 
other techniques. STI-WELM takes the least time to predict locations. 
However, the highly degraded accuracy with STI-WELM, especially 
in the presence of device heterogeneity (as seen in figure 8) is a major 
limitation for STI-WELM. After STI-WELM (figure 9), SHERPA is 
one of the quickest localization frameworks with an average prediction 
time of 0.43 seconds that is slightly lower than the lightweight Euclid-
ean-based KNN approach that takes 0.47 seconds for a prediction. Fi-
nally, SHERPA-HMM delivers its prediction results in 0.48 seconds 
which is only slightly higher than KNN. As compared to SHERPA, 
SHERPA-HMM takes ~0.05 seconds longer but has proven to deliver 
significantly better results as shown in section VII.C.  

In summary, from the results presented in this section, it is evident 
that our proposed SHERPA-HMM framework for is a promising ap-
proach that provides highly accurate, lightweight, smartphone hetero-
geneity-resilient indoor localization. A major strength of this frame-
work is that it can be easily ported across smartphones without the need 
of any calibration effort or cloud-based service to execute. 

 

 
Figure 9: Mean indoor location prediction time for SHERPA and frame-
works from prior work for the Lib_Study path using the OnePlus3 device. 

 CONCLUSION AND FUTURE WORK 
In this paper, we proposed the SHERPA-HMM framework that is a 

computationally lightweight solution to the mobile device heterogene-
ity problem for fingerprinting-based indoor localization. Our analysis 
in this work provides important insights into the role of mobile device 
heterogeneity on localization accuracy. SHERPA-HMM was able to 
deliver superior levels of accuracy as compared to state-of-the-art in-
door localization techniques using only a limited number of samples 
for each fingerprinting location. We also established that developing 
algorithms that can be easily ported across devices with minimal loss 
in localization accuracy is a crucial step towards the actuation of fin-
gerprinting-based localization frameworks in the real world. 

In the future, we would like to focus on improving the reliability of 
the proposed framework through incorporating inertial and magnetic 
information in the HMM formulation. This would greatly reduce the 
chances of the Viterbi algorithm from predicting false user movement 
direction changes. Another improvement would be to dynamically in-
crease the scan memory variable such that user predictions are made 
with higher confidence in situations where the online fingerprint is 
noisy. 
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