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Motivation

• Wireless sensor-actuator networks (WSANs) establish a symbiotic relation between network
resource allocation and physical system performance.
• Stability, safety, and resilience of industrial plants can only be guaranteed if maximum information loss bounds are

assumed.
• Network schedules and energy efficiency can only be computed if maximum latency and sampling rates bounds for

each flow are provided.

• We need holistic control algorithms that evaluate current physical and network conditions, adapt
network and control configurations at run-time, and deploy the new configurations without downtime
or performance loss.

Holistic Control

We are developing a new class of holistic plant and network controllers capable of:

(1) closing the loop between control and network;

(2) computing physical inputs and network configurations in real-time that guarantee cyber-physical
safety;

(3) observing and predicting physical and network conditions and their impacts.
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Figure 1: Current industrial process control sepa-
rates control and network management.
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Figure 2: Next generation of holistic industrial pro-
cess control.

Wireless Cyber-Physical Simulator

The Wireless Cyber-Physical Simulator (WCPS) provides a holistic simulation for wireless control systems:

• Open source: http://wcps.cse.wustl.edu;

• Integrate TOSSIM and Simulink;

• Support WirelessHART network adaptation;

• Provide Dockerized (container-based) installation.

WCPS Real-time (WCPS-RT)

• Integrate a real wireless network, and simulated physical plants and controllers;

• Capture wireless dynamics that are hard to simulate accurately;

• Leverage simulation support for physical plants.

Asymmetric Routing and Scheduling

Information flows in wireless networks should be asymmetrically routed and scheduled, providing extra
redundancy for flows that have the highest impact in the response of the plant:

• Lost sensing information can be reliably estimated using intermittent observation state estimators.
Thus, we use single-path source routing and reserve fewer retransmissions since it has low
latency and demands less resources.

• Lost actuation information cannot be estimated, particularly on transient responses and unstable
systems. Thus, we use multi-path graph routing or reserve more retransmissions since it has
high reliability with strict delivery deadlines.

Holistic Control Framework

Holistic control framework for wireless control system:
(1) closing the loop between network and control;
(2) run-time network reconfiguration based on physical states;
(3) offering wireless control systems with enhanced resiliency and efficiency!
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Figure 3: Holistic Control Architecture. It comprises (1) holistic controllers: monitor control performance,
and compute network configurations and control commands; (2) network: transmits control commands
and re-configures itself when needed.

We developed three holistic control strategies:
• adapting number of retransmissions;
• adapting sampling rates;
• adapting transmission schedules (self-triggered control).
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Figure 4: Wireless network adapts the sampling rate in face of physical disturbance. Disturbance begins
at t = 120 s and ends at t = 140 s. The sampling rate of WSAN dynamically responds to the disturbance,
which is increased when Lyapunov function violates the worst-case bound.

Cyber-Physical Case Study

Our hybrid simulation setup:

• Physical plant: up to 5 load positioning plants.

• Wireless network: 70-node WSAN testbed.

• Network interference: generated by Wi-Fi.

• Physical disturbance: constant bias of actuators.
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(a) Under normal condition.
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(b) Under physical disturbance.
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(c) Under network disturbance.

Edge Computing for Control Systems (On-Going)

• Multi-tier control architecture: (1) local control, (2) edge control, and (3) cloud control.

• The key differences among those tiers are the computation capacities and communication
latencies, which increase as the platforms are located progressively further away.

• The advantage of the multi-tier computing architecture:
• the flexibility in controller placements;
• the choice of corresponding control policies.

• Real-time edge computing platform provides real-time and fault-tolerance control services.

New Simulation Tool! WCPS Edge-Computing (WCPS-EC) (Fig.6)

• Multi-tier control architecture integrating local/edge/cloud computation platforms;

• Explore the impacts and trade-off of computation and communication of different control tiers.
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Figure 6: WCPS-EC Architecture. WCPS-EC is a real-time hybrid simulator that integrates a physical plant
simulated in Simulink Desktop Real-Time, real wire/wireless networks, e.g., WirelessHART network, Wi-
Fi, Internet, and real multi-tier computation platforms.
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Figure 5: Relationship between control performance (mean absolute error) and network energy cost. Fixed 
rate: 1, 0.5 and 0.25 Hz (blue), RA: rate adaptation (black), and ST: self-triggered control (red). (1) RA 
and ST have comparative control performance to fixed 1Hz sampling (2) while consuming less energy in 
the network! (3) ST is more aggressive in energy saving than RA under normal and physical disturbance.
(4) ST consumes more energy than RA under network disturbance, due to packet loss recovery.
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