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Motivation An Optimal Speed Management Strategy with Differential Privacy

Connected testbeds, i.e., remotely accessible testbeds integrated over a network in closed loop, can provide an affordable, A robust optimal vehicle speed controller is designed to reduce fuel consumption without violating emissions performance when uncertainty exists in

repeatable, scalable, and high-fidelity solution for early cyber-physical evaluation of connected automated vehicle (CAV) speed preview. The controller relies on preview provided using a privacy-guaranteeing V2V communication. Inter-vehicular distance constraint is
technologies. This vision critically relies on the development of high-fidelity cyber-integration interfaces. guaranteed to be satisfied despite error in velocity preview. Reductions are achieved in both fuel and NOx emissions.
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(1) Develop a fundamental framework for connecting remotely-accessible testbeds regardless of their location robust optimal speed - information | | vehicle speed (@
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(2) Develop an algorithm that exploits connectivity and autonomous driving
technologies for a powertrain-conscious management of CAV platoons of 22 - Inproved perturbation. baseline controlier
mixed vehicle types.
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(3) Validate the connected testbeds framework and the powertrain

management algorithms by creating a cyber-physical experimental

setup connecting geographically dispersed engine testbeds and Sﬂ % o

using it to provide a realistic and cost-effective assessment of Connected oo HMoo. Moo Mo ol
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Effectiveness of the robust controller With the improved perturbation method
on guaranteeing constraint satisfaction for privacy, better fuel economy and
IS demonstrated using various levels of tailpipe NOx emissions performances are

A PI’BdICtOI’ Fl‘am eWOI'k privacy and different perturbation achieved while maintaining the same level
| ' ' methods for privacy. of privacy guarantee.
A predictor framework is under development to compensate for the Light Duty Engine Heavy Duty Engine PIveEy PIVEEYS

network delays to increase the fidelity in closed-loop integration of

remotely accessible testbeds over the network.
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The predictor framework illustrated  The predictor dynamics are described by a neutral delay Norm. Fuel consumption Norrm. Fuel consumption
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over a network represented as delay.  self-tuned through a model-free optimization-based approach. Shat speec oter s pece cruise controller (ACC) vs. our speed planner in
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system integrated with a simulated vehicle  communication

l Predictors y|e|d up to 80% over the network. Data acquisition. Engine and dyno control system

improvement in coupling _ . . [l
fidelity, but the benchmark Key Takeaway: Hardware-in-the-loop tests using the

method worsens it by up to connected testbed reveal up to 2.3x higher benefits in _
reducing emissions and fuel consumption
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