
A predictor framework is under development to compensate for the
network delays to increase the fidelity in closed-loop integration of
remotely accessible testbeds over the network.

The predictor framework illustrated 
on an integration of two testbeds 
over a network represented as delay.

Predictors yield up to 80% 
improvement in coupling 
fidelity, but the benchmark 
method  worsens it by up to 
95% (left) in a connected 
testbed model (far left).

The predictor dynamics are described by a neutral delay
differential equation with two design parameters α and β that are 
self-tuned through a model-free optimization-based approach.

(1) Develop a fundamental framework for connecting remotely-accessible testbeds
together over a network with high fidelity despite the presence of network delays.

(2) Develop an algorithm that exploits connectivity and autonomous driving
technologies for a powertrain-conscious management of CAV platoons of 
mixed vehicle types.

(3) Validate the connected testbeds framework and the powertrain
management algorithms by creating a cyber-physical experimental
setup connecting geographically dispersed engine testbeds and
using it to provide a realistic and cost-effective assessment of
fuel economy and emissions in CAVs.
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Connected testbeds, i.e., remotely accessible testbeds integrated over a network in closed loop, can provide an affordable, 
repeatable, scalable, and high-fidelity solution for early cyber-physical evaluation of connected automated vehicle (CAV) 
technologies. This vision critically relies on the development of high-fidelity cyber-integration interfaces.

A robust optimal vehicle speed controller is designed to reduce fuel consumption without violating emissions performance when uncertainty exists in 
speed preview. The controller relies on preview provided using a privacy-guaranteeing V2V communication. Inter-vehicular distance constraint is 

guaranteed to be satisfied despite error in velocity preview. Reductions are achieved in both fuel and NOx emissions.

An Optimal Speed Management Strategy with Differential Privacy

Effectiveness of the robust controller 
on guaranteeing constraint satisfaction 
is demonstrated using various levels of 
privacy and different perturbation 
methods for privacy.

With the improved perturbation method 
for privacy, better fuel economy and 
tailpipe NOx emissions performances are 
achieved while maintaining the same level 
of privacy guarantee.
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Right: Illustration of 
car-following traffic setup, 

and framework for 
differentially private V2V 
communication and the 

robust optimal speed 
controller.
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Key Takeaway: Hardware-in-the-loop tests using the 
connected testbed reveal up to 2.3x higher benefits in 
reducing emissions and fuel consumption 
simulataneously compared to the simulation results.

Leader vehicle broadcasts the perturbed speed trajectory

Robust optimal speed 
controller

Radar
Follower vehicle

Broadcast
& radar 

information

Optimal 
follower 
vehicle speed

Potential 
attacker 

Broadcast
info

?

Leader 
vehicle

Perturbed

Actual

Experimental architecture
includes a physical engine

and a physical after-treatment
system integrated with a simulated vehicle 

over the network.

Above: Comparison of benchmark adaptive 
cruise controller (ACC) vs. our speed planner in 
simulation (left) and experiment (right). Below: 
Fuel rate and tailpipe NOx traces in experiment.
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Vision
Simulated vehicles in closed-loop with physical powertrains

regardless of their location
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