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Overview 
•  Mastitis is the most economically important disease of 

dairy farms worldwide. The US dairy producers are 
estimated to lose over $2 billion annually 

•  Mastitis can be caused by different pathogens  through 
different transmission routes, often being asymptomatic, 
i.e. subclinical mastitis 

•  Increase of somatic cells (leucocytes) in milk is an initial 
indicator of mastitis and somatic cells counts (SCC) are 
wide used  for early detection of  mastitis 

•  Cost-effective, cow-side, real-time monitoring of SCC 
pathogens and cow activity will significantly improve the 
control of mastitis in dairy farms 



Our Goals 
•  Build a sustainable cyber-physical 

system for smart dairy farms that 
integrates novel sensing, data 
processing, inference, and control 
approaches, to realize real-time, cost-
effect ive masti t is control and 
biosecurity 



Key Innovation 
•  Novel biosensors for low-cost, cow-side and real-

time somatic cell counting (SCC) and multiple 
causative pathogen identification 

•  Topological analysis of bio-signals for much 
improved accuracy in pathogen identification 

•  Radio-frequency identification (RFID) based 
localization system for automatic tracking of the 
animal-animal and animal-environment interactions  

•  Real-time modeling of the disease propagation 
dynamics to identify the disease transmission route 
and sources for isolation and treatment 



Workflow on Smart Diary Farms   

Magnetic	
Bead

TMB
HRP

α-E.	coli	
antibody

Electrode

oxidation

deposition

HRP:	Horseradish	peroxidase

Detection	of	Escherichia	coli	via	EIS	measurement	of	peroxidase (HRP)	reaction	
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Task: Developing low-cost, cow-side, in-line, 
quantitative SCC monitoring  

A)	In-line	somatic	cell	counter.		Top:	Cross-sectional	view	of	our	SCC	sensor;	Bottom:	its	
integration	into	a	milking	machine.		(B)	Typical	inter-electrode	capacitance	change	with	
time.	Its	change	rate	is	dependent	on	SCC.	(C)	Blind	test	results	of	25	raw	milk	samples.		
Correlation	with	true	SCC	found	by	a	flow	cytometer	is	0.876.		
	



Task: Faster response time with advanced 
regression 

Comparison	between	linear	regression	and	multi-segment	SVM	regression			
(A)	linear	regression	(B)	multi-seg	SVM	(C)	correlation	comparison	
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Table$I.$Correlation$values$of$linear$and$SVM$regression$(Fig.$4)$

Linear'regression' MultiFsegment'SVM'regression'
0.7356$±$0.0717$ 0.9215$±$0.0341$
0.7902$±$0.0478$ 0.9510$±$0.0264$
0.8548$±$0.0300$ 0.9646$±$0.0200$
0.8620$±$0.0347$ 0.9599$±$0.0239$
0.9043$±$0.0226$ 0.9666$±$0.0174$

$

$

In$Fig.$4,$leave:15%:out$cross:validation$is$performed$to$avoid$over:fitting.$Correlation$is$computed$
the$training$model$and$training$data$through$Pearson’s$correlation$(correlation$coefficient):$

$

On$each$time$segment,$train$MSE$and$correlation$of$linear$and$SVM$regression$are$similar,$but$test$
MSE$ of$ SVM$ is$ lower,$ which$mean$ SVM$ fits$ better.$ Since$ SVM$ is$ able$ to$ handle$ higher$ dimensional$
features,$we$may$consider$multiple$segment:wise$slopes,$rather$than$only$a$single$segment.$A$signal$of$
3min,$ for$ example,$we$ can$ split$ it$ into$ three$1:min$ segments$ and$ computer$ their$ slopes$ respectively.$
Then$the$three$slopes$are$used$as$features,$thus$we$obtain$a$3D$feature$vector.$By$this$way,$the$whole$
time$ span$ is$ utilized$ to$ extract$more$ completed$ features.$ Fig.5$ demonstrates$ the$ advantage$of$multi:
segment$method.$

$ $
Fig.5$Comparison$of$single$segment$(left)$and$multi:segment$(right)$SVM$regression$

Table$II.$Correlation$values$of$single$and$multiple$segment$SVM$regression$(Fig.$5)$

SVM'regression' MultiFSeg'SVM'
0.7458$±$0.0629$ 0.9215$±$0.0341$
0.8026$±$0.0500$ 0.9510$±$0.0264$
0.8616$±$0.0299$ 0.9646$±$0.0200$
0.8847$±$0.0393$ 0.9599$±$0.0239$
0.9092$±$0.0290$ 0.9666$±$0.0174$

$

Note$that$x$label$of$the$subfigures$in$Fig.$5$are$different.$Left$performs$on$1:min$segment,$and$right$
uses$whole$time$span$but$splits$it$ into$half:min$segments.$Obviously,$multi:segment$yields$much$lower$

Time	period 1st	min. 2nd	min. 3rd	min. 4th	min. 5th	min. 6th	min. 7th	min. 

Correlation	(R2) 0.5627 0.6773 0.7527 0.7982 0.8763 0.7645 0.6351 

Table 1  The correlation between capacitance change rate (dC/dt) and true SCC 



Task: Developing topological features for 
robust biosignal representation 

Examples	of	biosignals	and	their	representation	in	the	topological	space	
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Fig. 4 explains the procedure of generating point cloud
through delay embedding from a sample sequence q. In the
left figure, the red dots denote the sampling points in the time
domain. DE parameters are set as follows: the number of
sampling points n = 5, delay step s = 1, target dimension
d = 2. When t = 1, DE yields a two-dimensional point
(f(1), f(2)) according to Eq. 1. The dots with green circles
indicate the points used in DE (t = 1), and the corresponding
two-dimensional point is shown in the same color in the right
figure. When t = 2, the points with orange circles are collected
to generate the next two-dimensional point (f(2), f(3)), which
is shown as an orange dot in the right figure. Iterating through
t, we finally obtain a point cloud with m = 4 points in the
topological space.

Fig. 4. Delay embedding of a signal (s = 1, d = 2). Left: red dots denote
sampling points in time domain, and circles in the same color indicate the set
of points used in DE. Right: point cloud in 2D topological space, in which
each dot is generated through DE from the sample points marked by circles
with the same color in the left figure.

The critical parameter of DE is the delay step s. Given
the same signal, different s will generate different shapes of
point cloud as illustrated in Fig. 5, where Fig. 5(a) samples
from a synthetic function f(t) = cos(2⇡t/T ) with T = 50
sec (sampling frequency fs = 1 Hz). Intuitively, let d = 2,
Fig. 5(b) displays the corresponding point cloud when s =
1, 5, 15.

(a) Samples from the synthetic signal (b) Point cloud from delay embedding

Fig. 5. Delay embedding (d = 2) on a synthetic periodic signal with different
delay step s. (a) The raw signal, and (b) the point cloud corresponding to
different s in different colors.

B. Shape Analysis
In topological analysis, the larger the area of point cloud, the

better. For the above example, the optimal s = T⇥fs/2d [24],
which theoretically achieves the largest area of the point
cloud. Usually, the point cloud has a regular pattern when
the original signal oscillates periodically. However, the real
biosignal studied in this paper contains random oscillation,
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Fig. 6. Shape analysis of biosignals. Point cloud (colored dots) are generated
from the biosignals in corresponding colors. Red dash curves display fitted
ellipses. Biosignals with small inter-class variation show relatively large
variation in the shape of ellipses (length of the major axis). Biosignals with
large intra-class variation share similar length of the major axis.

whose point cloud does not display as a perfect ellipse, but in-
stead a solid cluster of points whose boundary approximates an
ellipse, as shown in Fig. 5(b) and Fig. 6(b)(c)(e)(f). Empirical
experiments show that modifying s does not make significant
difference to the elliptic boundary of the point cloud, so a
constant delay step is set and the shape of the elliptic boundary
becomes a robust set of features.

Thus we fit the point cloud to an ellipse using the least
square criterion [25] and extract parameters of the ellipse
as shape features of the point cloud. Fig. 6 shows two
groups of point cloud and the fitted ellipses, as well as their
corresponding raw signals. Fig. 6(a) displays biosignals from
two different classes, which demonstrate the small inter-class
variation. Signals in Fig. 6(d) are from the same classes that
exhibit large intra-class variation. Fig. 6(b) and (c) show point
clouds and fitted ellipses of the signals in Fig. 6(a). The colors
of point clouds correspond to the colors of biosignals. By the
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Fig. 4 explains the procedure of generating point cloud
through delay embedding from a sample sequence q. In the
left figure, the red dots denote the sampling points in the time
domain. DE parameters are set as follows: the number of
sampling points n = 5, delay step s = 1, target dimension
d = 2. When t = 1, DE yields a two-dimensional point
(f(1), f(2)) according to Eq. 1. The dots with green circles
indicate the points used in DE (t = 1), and the corresponding
two-dimensional point is shown in the same color in the right
figure. When t = 2, the points with orange circles are collected
to generate the next two-dimensional point (f(2), f(3)), which
is shown as an orange dot in the right figure. Iterating through
t, we finally obtain a point cloud with m = 4 points in the
topological space.

Fig. 4. Delay embedding of a signal (s = 1, d = 2). Left: red dots denote
sampling points in time domain, and circles in the same color indicate the set
of points used in DE. Right: point cloud in 2D topological space, in which
each dot is generated through DE from the sample points marked by circles
with the same color in the left figure.

The critical parameter of DE is the delay step s. Given
the same signal, different s will generate different shapes of
point cloud as illustrated in Fig. 5, where Fig. 5(a) samples
from a synthetic function f(t) = cos(2⇡t/T ) with T = 50
sec (sampling frequency fs = 1 Hz). Intuitively, let d = 2,
Fig. 5(b) displays the corresponding point cloud when s =
1, 5, 15.

(a) Samples from the synthetic signal (b) Point cloud from delay embedding

Fig. 5. Delay embedding (d = 2) on a synthetic periodic signal with different
delay step s. (a) The raw signal, and (b) the point cloud corresponding to
different s in different colors.

B. Shape Analysis
In topological analysis, the larger the area of point cloud, the

better. For the above example, the optimal s = T⇥fs/2d [24],
which theoretically achieves the largest area of the point
cloud. Usually, the point cloud has a regular pattern when
the original signal oscillates periodically. However, the real
biosignal studied in this paper contains random oscillation,
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Fig. 6. Shape analysis of biosignals. Point cloud (colored dots) are generated
from the biosignals in corresponding colors. Red dash curves display fitted
ellipses. Biosignals with small inter-class variation show relatively large
variation in the shape of ellipses (length of the major axis). Biosignals with
large intra-class variation share similar length of the major axis.

whose point cloud does not display as a perfect ellipse, but in-
stead a solid cluster of points whose boundary approximates an
ellipse, as shown in Fig. 5(b) and Fig. 6(b)(c)(e)(f). Empirical
experiments show that modifying s does not make significant
difference to the elliptic boundary of the point cloud, so a
constant delay step is set and the shape of the elliptic boundary
becomes a robust set of features.

Thus we fit the point cloud to an ellipse using the least
square criterion [25] and extract parameters of the ellipse
as shape features of the point cloud. Fig. 6 shows two
groups of point cloud and the fitted ellipses, as well as their
corresponding raw signals. Fig. 6(a) displays biosignals from
two different classes, which demonstrate the small inter-class
variation. Signals in Fig. 6(d) are from the same classes that
exhibit large intra-class variation. Fig. 6(b) and (c) show point
clouds and fitted ellipses of the signals in Fig. 6(a). The colors
of point clouds correspond to the colors of biosignals. By the

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, DECEMBER 2015 4

Fig. 4 explains the procedure of generating point cloud
through delay embedding from a sample sequence q. In the
left figure, the red dots denote the sampling points in the time
domain. DE parameters are set as follows: the number of
sampling points n = 5, delay step s = 1, target dimension
d = 2. When t = 1, DE yields a two-dimensional point
(f(1), f(2)) according to Eq. 1. The dots with green circles
indicate the points used in DE (t = 1), and the corresponding
two-dimensional point is shown in the same color in the right
figure. When t = 2, the points with orange circles are collected
to generate the next two-dimensional point (f(2), f(3)), which
is shown as an orange dot in the right figure. Iterating through
t, we finally obtain a point cloud with m = 4 points in the
topological space.

Fig. 4. Delay embedding of a signal (s = 1, d = 2). Left: red dots denote
sampling points in time domain, and circles in the same color indicate the set
of points used in DE. Right: point cloud in 2D topological space, in which
each dot is generated through DE from the sample points marked by circles
with the same color in the left figure.

The critical parameter of DE is the delay step s. Given
the same signal, different s will generate different shapes of
point cloud as illustrated in Fig. 5, where Fig. 5(a) samples
from a synthetic function f(t) = cos(2⇡t/T ) with T = 50
sec (sampling frequency fs = 1 Hz). Intuitively, let d = 2,
Fig. 5(b) displays the corresponding point cloud when s =
1, 5, 15.

(a) Samples from the synthetic signal (b) Point cloud from delay embedding

Fig. 5. Delay embedding (d = 2) on a synthetic periodic signal with different
delay step s. (a) The raw signal, and (b) the point cloud corresponding to
different s in different colors.

B. Shape Analysis
In topological analysis, the larger the area of point cloud, the

better. For the above example, the optimal s = T⇥fs/2d [24],
which theoretically achieves the largest area of the point
cloud. Usually, the point cloud has a regular pattern when
the original signal oscillates periodically. However, the real
biosignal studied in this paper contains random oscillation,
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Fig. 6. Shape analysis of biosignals. Point cloud (colored dots) are generated
from the biosignals in corresponding colors. Red dash curves display fitted
ellipses. Biosignals with small inter-class variation show relatively large
variation in the shape of ellipses (length of the major axis). Biosignals with
large intra-class variation share similar length of the major axis.

whose point cloud does not display as a perfect ellipse, but in-
stead a solid cluster of points whose boundary approximates an
ellipse, as shown in Fig. 5(b) and Fig. 6(b)(c)(e)(f). Empirical
experiments show that modifying s does not make significant
difference to the elliptic boundary of the point cloud, so a
constant delay step is set and the shape of the elliptic boundary
becomes a robust set of features.

Thus we fit the point cloud to an ellipse using the least
square criterion [25] and extract parameters of the ellipse
as shape features of the point cloud. Fig. 6 shows two
groups of point cloud and the fitted ellipses, as well as their
corresponding raw signals. Fig. 6(a) displays biosignals from
two different classes, which demonstrate the small inter-class
variation. Signals in Fig. 6(d) are from the same classes that
exhibit large intra-class variation. Fig. 6(b) and (c) show point
clouds and fitted ellipses of the signals in Fig. 6(a). The colors
of point clouds correspond to the colors of biosignals. By the
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Fig. 4 explains the procedure of generating point cloud
through delay embedding from a sample sequence q. In the
left figure, the red dots denote the sampling points in the time
domain. DE parameters are set as follows: the number of
sampling points n = 5, delay step s = 1, target dimension
d = 2. When t = 1, DE yields a two-dimensional point
(f(1), f(2)) according to Eq. 1. The dots with green circles
indicate the points used in DE (t = 1), and the corresponding
two-dimensional point is shown in the same color in the right
figure. When t = 2, the points with orange circles are collected
to generate the next two-dimensional point (f(2), f(3)), which
is shown as an orange dot in the right figure. Iterating through
t, we finally obtain a point cloud with m = 4 points in the
topological space.

Fig. 4. Delay embedding of a signal (s = 1, d = 2). Left: red dots denote
sampling points in time domain, and circles in the same color indicate the set
of points used in DE. Right: point cloud in 2D topological space, in which
each dot is generated through DE from the sample points marked by circles
with the same color in the left figure.

The critical parameter of DE is the delay step s. Given
the same signal, different s will generate different shapes of
point cloud as illustrated in Fig. 5, where Fig. 5(a) samples
from a synthetic function f(t) = cos(2⇡t/T ) with T = 50
sec (sampling frequency fs = 1 Hz). Intuitively, let d = 2,
Fig. 5(b) displays the corresponding point cloud when s =
1, 5, 15.

(a) Samples from the synthetic signal (b) Point cloud from delay embedding

Fig. 5. Delay embedding (d = 2) on a synthetic periodic signal with different
delay step s. (a) The raw signal, and (b) the point cloud corresponding to
different s in different colors.

B. Shape Analysis
In topological analysis, the larger the area of point cloud, the

better. For the above example, the optimal s = T⇥fs/2d [24],
which theoretically achieves the largest area of the point
cloud. Usually, the point cloud has a regular pattern when
the original signal oscillates periodically. However, the real
biosignal studied in this paper contains random oscillation,
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Fig. 6. Shape analysis of biosignals. Point cloud (colored dots) are generated
from the biosignals in corresponding colors. Red dash curves display fitted
ellipses. Biosignals with small inter-class variation show relatively large
variation in the shape of ellipses (length of the major axis). Biosignals with
large intra-class variation share similar length of the major axis.

whose point cloud does not display as a perfect ellipse, but in-
stead a solid cluster of points whose boundary approximates an
ellipse, as shown in Fig. 5(b) and Fig. 6(b)(c)(e)(f). Empirical
experiments show that modifying s does not make significant
difference to the elliptic boundary of the point cloud, so a
constant delay step is set and the shape of the elliptic boundary
becomes a robust set of features.

Thus we fit the point cloud to an ellipse using the least
square criterion [25] and extract parameters of the ellipse
as shape features of the point cloud. Fig. 6 shows two
groups of point cloud and the fitted ellipses, as well as their
corresponding raw signals. Fig. 6(a) displays biosignals from
two different classes, which demonstrate the small inter-class
variation. Signals in Fig. 6(d) are from the same classes that
exhibit large intra-class variation. Fig. 6(b) and (c) show point
clouds and fitted ellipses of the signals in Fig. 6(a). The colors
of point clouds correspond to the colors of biosignals. By the
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Fig. 4 explains the procedure of generating point cloud
through delay embedding from a sample sequence q. In the
left figure, the red dots denote the sampling points in the time
domain. DE parameters are set as follows: the number of
sampling points n = 5, delay step s = 1, target dimension
d = 2. When t = 1, DE yields a two-dimensional point
(f(1), f(2)) according to Eq. 1. The dots with green circles
indicate the points used in DE (t = 1), and the corresponding
two-dimensional point is shown in the same color in the right
figure. When t = 2, the points with orange circles are collected
to generate the next two-dimensional point (f(2), f(3)), which
is shown as an orange dot in the right figure. Iterating through
t, we finally obtain a point cloud with m = 4 points in the
topological space.

Fig. 4. Delay embedding of a signal (s = 1, d = 2). Left: red dots denote
sampling points in time domain, and circles in the same color indicate the set
of points used in DE. Right: point cloud in 2D topological space, in which
each dot is generated through DE from the sample points marked by circles
with the same color in the left figure.

The critical parameter of DE is the delay step s. Given
the same signal, different s will generate different shapes of
point cloud as illustrated in Fig. 5, where Fig. 5(a) samples
from a synthetic function f(t) = cos(2⇡t/T ) with T = 50
sec (sampling frequency fs = 1 Hz). Intuitively, let d = 2,
Fig. 5(b) displays the corresponding point cloud when s =
1, 5, 15.

(a) Samples from the synthetic signal (b) Point cloud from delay embedding

Fig. 5. Delay embedding (d = 2) on a synthetic periodic signal with different
delay step s. (a) The raw signal, and (b) the point cloud corresponding to
different s in different colors.

B. Shape Analysis
In topological analysis, the larger the area of point cloud, the

better. For the above example, the optimal s = T⇥fs/2d [24],
which theoretically achieves the largest area of the point
cloud. Usually, the point cloud has a regular pattern when
the original signal oscillates periodically. However, the real
biosignal studied in this paper contains random oscillation,
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Fig. 6. Shape analysis of biosignals. Point cloud (colored dots) are generated
from the biosignals in corresponding colors. Red dash curves display fitted
ellipses. Biosignals with small inter-class variation show relatively large
variation in the shape of ellipses (length of the major axis). Biosignals with
large intra-class variation share similar length of the major axis.

whose point cloud does not display as a perfect ellipse, but in-
stead a solid cluster of points whose boundary approximates an
ellipse, as shown in Fig. 5(b) and Fig. 6(b)(c)(e)(f). Empirical
experiments show that modifying s does not make significant
difference to the elliptic boundary of the point cloud, so a
constant delay step is set and the shape of the elliptic boundary
becomes a robust set of features.

Thus we fit the point cloud to an ellipse using the least
square criterion [25] and extract parameters of the ellipse
as shape features of the point cloud. Fig. 6 shows two
groups of point cloud and the fitted ellipses, as well as their
corresponding raw signals. Fig. 6(a) displays biosignals from
two different classes, which demonstrate the small inter-class
variation. Signals in Fig. 6(d) are from the same classes that
exhibit large intra-class variation. Fig. 6(b) and (c) show point
clouds and fitted ellipses of the signals in Fig. 6(a). The colors
of point clouds correspond to the colors of biosignals. By the
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Fig. 4 explains the procedure of generating point cloud
through delay embedding from a sample sequence q. In the
left figure, the red dots denote the sampling points in the time
domain. DE parameters are set as follows: the number of
sampling points n = 5, delay step s = 1, target dimension
d = 2. When t = 1, DE yields a two-dimensional point
(f(1), f(2)) according to Eq. 1. The dots with green circles
indicate the points used in DE (t = 1), and the corresponding
two-dimensional point is shown in the same color in the right
figure. When t = 2, the points with orange circles are collected
to generate the next two-dimensional point (f(2), f(3)), which
is shown as an orange dot in the right figure. Iterating through
t, we finally obtain a point cloud with m = 4 points in the
topological space.

Fig. 4. Delay embedding of a signal (s = 1, d = 2). Left: red dots denote
sampling points in time domain, and circles in the same color indicate the set
of points used in DE. Right: point cloud in 2D topological space, in which
each dot is generated through DE from the sample points marked by circles
with the same color in the left figure.

The critical parameter of DE is the delay step s. Given
the same signal, different s will generate different shapes of
point cloud as illustrated in Fig. 5, where Fig. 5(a) samples
from a synthetic function f(t) = cos(2⇡t/T ) with T = 50
sec (sampling frequency fs = 1 Hz). Intuitively, let d = 2,
Fig. 5(b) displays the corresponding point cloud when s =
1, 5, 15.

(a) Samples from the synthetic signal (b) Point cloud from delay embedding

Fig. 5. Delay embedding (d = 2) on a synthetic periodic signal with different
delay step s. (a) The raw signal, and (b) the point cloud corresponding to
different s in different colors.

B. Shape Analysis
In topological analysis, the larger the area of point cloud, the

better. For the above example, the optimal s = T⇥fs/2d [24],
which theoretically achieves the largest area of the point
cloud. Usually, the point cloud has a regular pattern when
the original signal oscillates periodically. However, the real
biosignal studied in this paper contains random oscillation,
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Fig. 6. Shape analysis of biosignals. Point cloud (colored dots) are generated
from the biosignals in corresponding colors. Red dash curves display fitted
ellipses. Biosignals with small inter-class variation show relatively large
variation in the shape of ellipses (length of the major axis). Biosignals with
large intra-class variation share similar length of the major axis.

whose point cloud does not display as a perfect ellipse, but in-
stead a solid cluster of points whose boundary approximates an
ellipse, as shown in Fig. 5(b) and Fig. 6(b)(c)(e)(f). Empirical
experiments show that modifying s does not make significant
difference to the elliptic boundary of the point cloud, so a
constant delay step is set and the shape of the elliptic boundary
becomes a robust set of features.

Thus we fit the point cloud to an ellipse using the least
square criterion [25] and extract parameters of the ellipse
as shape features of the point cloud. Fig. 6 shows two
groups of point cloud and the fitted ellipses, as well as their
corresponding raw signals. Fig. 6(a) displays biosignals from
two different classes, which demonstrate the small inter-class
variation. Signals in Fig. 6(d) are from the same classes that
exhibit large intra-class variation. Fig. 6(b) and (c) show point
clouds and fitted ellipses of the signals in Fig. 6(a). The colors
of point clouds correspond to the colors of biosignals. By the

(A) Biosignal with small inter-class variation.         (B) Point cloud (class 1).  (C) Point cloud (class 2).

(D) Biosignal with large intra-class variation.         (E) Point cloud (sample 1).  (F) Point cloud (sample 2).

Flow	of	topological	analysis	



Task: Developing farm-wide models for cow 
mobility, pathogen transmission prediction, 
and correlation analysis 

(A)	Cow	trajectories	and	contact	events.	(B)	Rules	for	
contact	events.		(C)	Measurement	and	solution	space	
refinement	loop	for	achieving	best	results.		



Task: Developing point-of-need, low-cost and 
rapid detection of pathogens  

(A)	Design	of	ACEK	affinity	sensor.		ACEK	effects	produce	directed	particle	movement	
towards	the	electrodes	for	faster	binding,	and	specific	binding	leads	to	lower	interfacial	
capacitance	Cint.		(B)	System	overview	of	ACEK	capacitive	sensor.		
Middle:	concept	of	the	sensing	system;	Top	right:	actual	electrode	chips	used	in	our	
work;	Bottom	left:	prototyped	portable	board-level	readout	system;	Top	left:	Plots	of	
normalized	capacitance	change	with	time	for	positive	(red),	negative	(blue)	and	control	
(black).	(C)	Protein	(IgG	antibody)	detection	by	board	level	analyzer.		Detection	limit	is	
5pg/mL	or	22fM.		Detection	is	done	in	30	seconds.		



Conclusions of Research Work 
•  Innovative microfluidic bio-sensing methods integrated with 

topological classification will enable in-line SCC and point-
of-care high-sensitivity detection of pathogen 

•  The approaches can be extended to other bio-sensing 
applications, leading to significant advancement in 
developing low-cost, real-time, high-accuracy bio/chemical 
sensors 

•  RFID localization and tracking of cattle movement and 
disease propagation dynamics modeling can be used for 
pathogen tracking in general and for farm animals in 
particular  

•  High volume of data will be generated from modern farms in 
real-time, calling for transformative designs on smart diary 
farms and their practices  



Broader Impact 
•  Mastitis control is of significant economic value, especially to dairy 

farms, milk production, milk product processing, and crucial to bio-
security of the US diary farming industry 

•  The project provides the US dairy farmers with an integrated low-
cost solution for effective detection and therefore control of 
mastitis, directly contributing to and impacting the sustainability of 
the dairy industry worldwide 

•  The developed sensing, computational, and communication 
technologies are applicable to other domains of agriculture, by 
transforming them into a control loop with data-driven decision 
making and actuation 

•  This research provides interdisciplinary training to both graduate 
and undergraduate students, and new cross-disciplinary class 
modules are being developed based on the research findings 
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