
Doing More with Less: Cost-Effective Infrastructure for Automotive Vision Capabilities
University of North Carolina Chapel Hill

PI: Prof. James Anderson, co-PIs: Prof. Sanjoy Baruah, Prof. Alexander Berg & Dr. Shige Wang

Students: Tanya Amert, Nathan Otterness, Ming Yang

Many safety-critical cyber-physical systems rely on advanced sensing

capabilities to react to changing environmental conditions. However,

cost-effective deployments of such capabilities have remained elusive.

Such deployments will require software infrastructure that enables

multiple sensor-processing streams to be multiplexed onto a common

hardware platform at reasonable cost, as well as tools and methods for

validating that required processing rates can be maintained.

Currently, advanced driver assistance system (ADAS) capabilities

have only been implemented in prototype vehicles using hardware,

software, and engineering infrastructure that is very expensive.

Prototype hardware commonly includes multiple high-end CPU and

GPU chips and expensive LIDAR sensors.

Focusing directly on judicious resource allocation, this project seeks

to enable more economically viable implementations. Such

implementations can reduce system cost by utilizing cameras in

combination with low-cost embedded multicore CPU+GPU

platforms.

Motivation

Problem

Supporting Real-Time Computer Vision Workloads

This project focuses on three principal objectives:

▪ New implementation methods for multiplexing disparate

image-processing streams on embedded multicore platforms

augmented with GPUs.

▪ New analysis methods for certifying required stream-

processing rates.

▪ New computer-vision methods for constructing image-

processing pipelines.

Objectives

▪ Automotive Cyber-Physical Systems graduate-level course at UNC Chapel Hill.

(http://www.cs.unc.edu/~anderson/teach/comp790a/)

▪ Autonomous Driving: Moving from Theory to Practice graduate-level course at

UNC Chapel Hill. (http://need4speed.web.unc.edu,

https://cs.unc.edu/~anderson/teach/comp790car/)

▪ G. Elliott, K. Yang, and J. Anderson, “Supporting Real-Time Computer Vision

Workloads using OpenVX on Multicore+GPU Platforms”, RTSS 2015.

▪ K. Yang, G. Elliott, and J. Anderson, “Analysis for Supporting Real-time

Computer Vision Workloads using OpenVX on Multicore+GPU Platforms”,

RTNS 2015.

▪ W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Fu, A. Berg, “SSD:

Single Shot MultiBox Detector”, ECCV 2016.

▪ N. Otterness, V. Miller, M. Yang, J. Anderson, and F.D. Smith, “GPU Sharing for

Image Processing in Embedded Real-Time Systems”, OSPERT 2016.

▪ N. Otterness, M. Yang, S. Rust, E. Park, J. Anderson, F.D. Smith, A. Berg, S.

Wang, “An Evaluation of the TX1 for Supporting Real-Time Computer-Vision

Workloads”, RTAS 2017

▪ N. Otterness, M. Yang, T. Amert, J. Anderson, and F.D. Smith, “Inferring the

Scheduling Policies of an Embedded CUDA GPU”, OSPERT 2017.

▪ M. Yang and J. Anderson, “Response-Time Bounds for Concurrent GPU

Scheduling”, ECRTS-WiP 2017.

▪ T. Amert, N. Otterness, M. Yang, J. Anderson, and F.D. Smith , “GPU

Scheduling on the NVIDIA TX2: Hidden Details Revealed”, RTSS 2017.

▪ N. Otterness, M. Yang, T. Amert, J. Bakita, J. Anderson, and F. D. Smith,

“Implicit GPU Synchronization: A Barrier to Real-Time CUDA Workloads”,

RTAS 2018, in submission.

Activities

http://roboticsandautomationnews.com/wp-content/uploads/2016/09/adas-illustration.gif

Implicit Synchronization

• GPU synchronization blocks GPU operations, causing capacity

loss.

• The CUDA API can cause unexpected implicit synchronization.

• Future middleware may reduce blocking by re-scheduling some

implicit-sync API calls.

Multiprocess Co-Scheduling

• Methodology: Run GPU-using

programs in separate processes,

record start and end times of

thread blocks.

• Observations:

• GPU coscheduling can reduce

total time compared to

sequential execution.

• Block times are minimally

affected by coscheduling in

this case.

• Coscheduled processes do not

truly share the GPU, but are

multiprogrammed.

• Our observations imply that using

multiple threads within a single

process have more potential to

improve utilization.

Case Study: Image-Processing Tasks

Choice of Software: CaffeNet, Hough, etc.

Methodology: We used NVIDIA’s nvprof CUDA profiling tool

to record known implicit-synchronization triggers of Hough and

CaffeNet.

Observations:

• Hough invokes implicit-synchronization calls, including

cudaFree, across a wide span within its overall runtime.

• The NULL stream is partially used in CaffeNet to

intentionally trigger implicit synchronization .We constructed a task system to show that if the

total utilization , where is the

maximum # of threads per block, then response times may be

unbounded. Here are the details of this task system:

Let for convenience, we have

Although the , job ’s response

time is , where .

Total Utilization Restriction

Platform

We are focusing on real-time systems

where significant computing capacity

must be provided with minimum

monetary cost and size, weight, and

power (SWaP). NVIDIA’s Jetson TX2

fits these constraints.

Jetson TX2:

▪ 600 USD

▪ a leading multicore+GPU

solution

▪ Marketed by NVIDIA as

“The embedded platform for

autonomous everything”

▪ A single-board computer

containing:

▪ quad-core 64-bit ARM

CPU + dual-core Denver

CPU

▪ 8GB of DRAM,

▪ an integrated GPU

▪ The DRAM is shared

between the host CPU and

GPU.

A57 CPU 0

…
L1-I

48KB

L1-D

32KB

A57 CPU 3

L1-I

48KB

L1-D

32KB

A57 CPU shared L2 cache

2 MB

DRAM1

Bank 0

DRAM

Bank 1 ….. DRAM

Bank n

DRAM

Bank 2

DRAM

Bank n-1

GPU L2 cache

512 KB

Pascal GPU

Memory Controller

SM 0 SM 1

128 cores 128 cores

Denver CPU 0

L1-I

128KB

L1-D

64KB

Denver CPU 1

L1-I

128KB

L1-D

64KB

Denver CPU shared L2 cache

2 MB

1DRAM bank count and size depend on device package

Copy Engine

Inferring GPU Scheduling Behavior

Motivation:

• Scheduling of GPU programs

can result in wasted capacity

Methodology:

• Designed an experimentation

framework to infer GPU

scheduling behavior

• Developed rules to describe

scheduling behavior seen in

experiments

Future work:

• Write middleware to reorder

GPU work

• Develop schedulability theory

We use to represent each GPU task, where

indicates the job execution time, indicates the task period,

indicates the # of blocks, and indicating # of threads per block.

http://www.cs.unc.edu/~anderson/teach/comp790a/)
http://need4speed.web.unc.edu/
https://cs.unc.edu/~anderson/teach/comp790car/

