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Solar Monitoring Facility at the ASU Research Park.

• PV array consists of 104 PV panels.
• Each panel has a smart monitoring device.
• SMDs equipped with sensors, actuators, RF and

WiFi, sense current, voltage, irradiance and temp.

FACILITY AT ASU
• Real dataset from PV Watts.
• Fully Connected and Dropout Neural Nets with

different probabilities used.
• Concrete Dropout reduces overfitting.
• Monte Carlo simulation and K-fold cross validation

performed.

Fault Detection: 4 configurations (12S, 12P, 4S-3P,
3S-4P) to analyze 8 different faults.
PV data is used for training and testing.

Using simulations 
under resistor 
loading losses, we 
find efficiency 
improvements as 
much as 16% with 
partial shading.

FAULT DETECTION USING NEURAL NETS

FAULT DETECTION - RESULTS

TOPOLOGY SELECTION – USING NEURAL 
NETWORKS

FAULT DETECTION USING GRAPH SIGNAL 
PROCESSING
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• Use kernel regression on cloud video data to
predict cloud movement to manage power
fluctuations due to partial shading.

• PV fault detection
via a graph-based
semi-supervised
classifier

.
• Lower

computational cost
over supervised ML
algorithms

Classification error can be as low as 10% !

Topologies such as series parallel (SP) and total cross
tied (TCT) produce different max. power points under
shading - Need to choose the optimal configuration

Approach: Use neural networks to learn partial
shading profiles under the effect of resistance loading
losses and map to the best topology.

TOPOLOGY SELECTION- RESULTS

SHADING PREDICTION VIA KERNEL 
REGRESSION

Comparison of various classifiers – PV fault classification

80% 
reduction 
in 
prediction 
time with 
minimal 
loss in 
visual 
quality.


