

CPS: Synergy: Sensor Network-Based Lower-Limb Prosthetic Optimization and Control

- Ou Bai ${ }^{\text {Pl, } 1, ~ D o u g l a s ~ M u r p h y ~}{ }^{2}$, Ashraf Gorgey ${ }^{2}$, Ding-Yu Fei³, Zhixiu Han ${ }^{4}$
- ${ }^{1}$ Florida International University, ${ }^{2}$ Hunter Holmes McGuire VA Medical Center, ${ }^{3}$ Virginia Commonwealth University, ${ }^{4}$ Ottoback.
- http://web.eng.fiu.edu/obai/
- obai@fiu.edu
- CNS-1552163

Human Estimation and CPS Control

- Challenges in Cyber-Physical Systems with Human-in-the-Loop
- Supervised Control: Prone to human errors and inaccuracies
- Reactive Control: Delay in human reaction to physical systems
- Proactive Control: Faster, more accurate, and adaptive

- HiL-CPS Application: Powered Prosthetic Optimization and Control
- Challenge: Visual-based prosthesis fitting by experts results in inaccurate control - causing more energy expenditure and imbalance
- Solution: Body-area sensor-based prosthetic control optimization
- Challenge: Mechanical sensors embedded in prosthesis are unable to provide real-time adaptive control
- Solution: Smart sensing of the user's volition to provide proactive control of the prosthesis before the transition of gait locomotion modes

Findings

- Physiological activities measured by bodyarea sensors provided critical evidence for prosthetic tuning/optimization on amputees
- Electromyography (EMG)
- In-sole ground reaction force
- Clinical evaluation

- Automatic tuning of control parameters
- Brain-computer interface (BCI) method of motor imagery provided above 80\% accuracy for user's volitional control of knee lock; Results showed that it is feasible for proactive control of prosthesis before the transition of gait locomotion modes
- Preliminary test on single amputee subject
- Received five hours of mental
 training with electroencephalography (EEG) feedback

