Software Defined Control for Smart Manufacturing Systems

Kira Barton*(bartonkl@umich.edu) Z. Morley Mao**, James Moyne*, +,++Sayan Mitra, ++,+Sibin Mohan

*Department of Mechanical Engineering, University of Michigan, Ann Arbor

- **Department of Computer Science, University of Michigan, Ann Arbor
- +Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign
 - ++Department of Computer Science, University of Illinois, Urbana-Champaign

https://sdc-mfg.engin.umich.edu/sdc

Technical Challenges

- Create a centralized framework for system analysis and control
- Augment existing systems with value-add capabilities
- Derive requirements for *Greenfield implementation*
- Derive a generalized *Digital Twin (DT) platform*
- Determine algorithms for adaptive decision making
- Derive methods in cybersecurity at the cyber/physical interface

Scientific Contributions

- Improve *robustness and resiliency* of manufacturing control systems
- Framework for anomaly detection, isolation, classification and eradication
- Framework for *predictive analytics* with secure data infrastructure
- Framework for agile control reconfiguration

Flexible control reconfiguration to *enhance throughput* and *increase overall system efficiency*

Technical Approach

- Define a common DT structure to facilitate development, deployment & maintenance
- Define DT class inheritance capabilities to facilitate re-use and extensibility
- Develop solutions for a DT framework to facilitate scalability and reusability

- Develop security protocols and software engines to evaluate robustness in cybermanufact. systems
- Derive a new language and simulation platform for distributed agents

Koord language and simulation

 Define a new description and formulation of the centralized/distributed continuum for agile control in manufacturing

> Multi-agent control architecture

Broader Impacts Outreach Activities

Impact to the field of CPS

- Simulation tools to verify control decisions
- Data infrastructure to store/secure data for CPS
- Generalized Diaital Twin modeling framework

Dissemination (2020-2021)

- 1. Qamsane, Y. et al., in IEEE Access.
- 2. Moyne, J., et al., IEEE Access.
- 3. Balta, E., et al. IEEE Trans. on Control Systems Technology (x2)
- 4. Kovalenko, I,. et al., Smart and Sustainable Manufacturing Systems
- 5. Balta, E., et al. IFAC World Congress (x2)
- 6. Aksoy, D., et al., American Control Conference (ACC)
- 7. Mingjie B., et al., Modeling, Estimation, Control Conference
- 8. Wang, H., et al., Manufacturing Science and Engineering Conference
- 9. Mitra, S., et al., Object-oriented Prog., Systems, Languages & Apps
- 10.Jansch-Porto, J.., et al., Int Conference Robotics & Automation
- 11.Kao, B.C., et al., Int. Conference on Embedded Software
- 12. Nakano, et. al., Conference on Automation Science and Engineering

Rockwell Automation

