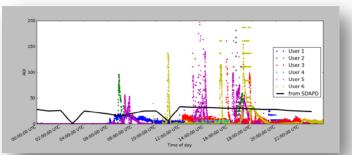

CitiSense and MetaSense: Challenges & Technologies for Mobile Participatory Sensing for Air Quality

Tajana S. Rosing & MetaSense Team Computer Science & Engineering UC San Diego

NSF CitiSense: Mobile Personal Air Quality Monitoring


THE WALL STREET JOURNAL

Bad Air at State and Main

Need advance warning of ozone at the n air-quality sensors that feed data to sm; and others to avoid the heaviest concent

- Sensors and phones given to commuters using various transportation means throughout San Diego area
- Individual exposure varied widely from EPA AQI
- Affected attitudes and behavior

MetaSense: Improving Accuracy

- Low-cost sensors have proven difficult to calibrate
 - Calibration parameters from manufacturer are inadequate
 - Sensors are affected by many factors besides pollutants
- Idea: field calibration
 - Design a new board with the latest low-power sensors
 - Co-locate mobile monitors at regulatory sites, gather data
 - In 2016 we did an initial study in Los Angeles
 - Build machine learning models of sensor and environment
 - effectively we are doing pollutant estimation

Mike Hannigan (CU Boulder)

Ashley Collier (CU Boulder)

Sharad Vikram Michael Ostertag

Kevin Patrick (Public Health)

Sanjoy Dasgupta

San Diego Deployment'17

- Rotating monitors through 3 ref. sites
- Benchmarked non-linear ML techniques and used environmental variables

Crowdsourcing mobile sensing with machine learning can give more accurate exposure maps via in-field calibration

Sen

CO, NO₂, O₃
(electrochemical)

Decision

- O₃ (metal oxide)
- VOC (PID, Mox 2x)
- CO₂ (NDIR)

