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does not guarantee optimality and can even cause
catastrophic system behaviors. The proposed research
aims to establish a control-theoretic foundation to resolve
these issues by allowing distributional errors in statistical
models and by providing control strategies that are robust
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e Statistical model: local optimality, wrong prior info.
(e.g., demand distribution estimator)
 Human behavior: difficult to predict
(e.g., customers’ buying behaviors)
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moments [Scarf et al., 1958], [Delage & Ye, 2010],
[Samuleson, Yang, 2017], etc.
« Statistical ball: Phi-divergence [Ben-Tal et al., 2013],
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e Supermarket refrigeration systems account for 7% of

—_
(00)

0 10 20 30 40 50 60 70 80 90
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* Issue: difficult to have reliable future demand F 1T N L standara distributionally robust
distribution. T o e e ™  Distributionally robust control reduces the cost by 29.6%,
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by maintaining the inventory level close to 0.
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