

Background

Problem: Malicious contents have been adversely impacting users in social networks. It is critical of importance to develop effective mechanisms to capture and detect them.

State-of-the-art:

- Detecting spammers from blindly collected contents or accounts: low efficiency and only detect a small portion of spammers.
- Creating honeypot accounts as lures to attract spammers: has drawbacks in deployment flexibility, attribute variability, and network scalability, as it involves considerable human efforts.

Goal: We propose a novel malicious contents gathering system, collecting contents that are far more likely of including spammers' activities so as to detect and remove them.

Motivation

- Large amounts of users are suffering spammy behaviors.
- The diversity of user attributes meeting spammer's taste.
- Many users have the intrinsic property as honeypot in spammer attraction.
- Relieve manual construction overhead of honeypots.

Elastic-Honeypot

- Elastic-honeypot is constructed on the top of normal users.
- Taking advantages of users diversity and screening attributes that attract spammers' tastes.
- collecting tweets that are far more likely of including spammers' activities.
- Easily to be scaled up to an arbitrarily sized network.
- Can quickly migrate to new users or new attributes to adapt the change of spammers' taste.

Technical Challenges

- the wide variety of attributes and billions of users
- How to handle spammer taste drift issues
- feature drift

- Facebook/Instagram Search API, etc
- ones, graph clustering methods to identify victims
- shift behaviors of Elastic-honeypot
- •
- A fully-fledge system including real-time data gathering and realtime detector

Empowering Elastic-honeypot as Real-time Malicious Content Sniffers for Social Networks **NSF Award #: 1948374 University of Louisiana at Lafayette**

Elastic-honeypot's activities have to be utterly transparent to users, for obeying Social networks' security and privacy policy

• How to determine the top ones meeting spammers' taste, from

• How to shift across accounts to maintain high efficiency

How to develop efficient classification solutions and handle

Social network APIs: Twitter Streaming API, Reddit API,

• Selecting attributes from a large pool and refining to get effective

• Analyzing and predicting users' activity patterns to determine the

Developing graph-based and outlier-based classification solutions

System Evaluations

Experiments: create a 100-node pseudo-honeypot network and run 300 hours. We manually label 1,290 spams and 5,517 non-spams.

Then, we create a 100-node pseudo-honeypot networks and run a total of 100 hours.

Honeypot mehtod	Time	Running duration	Honeypots	Spams	Spa
Stringhini et.al. [1]	2010	11 months	300	_	15,
Lee <i>et.al.</i> [2]	2011	7 month	60	_	36,
Yang et.al. [3]	2014	5 month	96	17,000	1,1
Yang et.al. [3]'s advanced system	2014	10 days	10	_	-
Advanced pseudo-honeypot system	2018	50 hours	50	7,370	2,3

Scientific and Border Impacts

- Developing a novel, lightweight, and real-time system for effectively gathering and classifying manic-likely contents
- Gathering a large-sized dataset for use in AI and cybersecurity areas
- Novel solutions advancing the field and boosting the system robustness
- Real-world implementations and deployments yield valuable experience and software toolkits
- Research opportunities for graduate and undergraduate students
- Summer tutorials for educating and engaging undergraduate students with entry-level knowledge

