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“The Largest Math Proof Ever”

4 CPU years computation, but 2 days on cluster (800 cores)

200 terabytes proof, but validated with verified checker

4 / 26



“The Largest Math Proof Ever”

4 CPU years computation, but 2 days on cluster (800 cores)

200 terabytes proof, but validated with verified checker

4 / 26



“The Largest Math Proof Ever”

4 CPU years computation, but 2 days on cluster (800 cores)

200 terabytes proof, but validated with verified checker

4 / 26



Computer-Aided Mathematics

Fields Medalist Timothy Gowers stated that mathematicians
would like to use three kinds of technology [Big Proof 2017]:

Proof Assistant Technology
• Prove any lemma that a graduate student can work out

Proof Search Technology
• Automatically determine whether a conjecture holds
• In this talk: Linear speedups on thousands of cores

Proof Checking Technology
• Mechanized validation of all details
• In this talk: Formally verified checking of huge proofs
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Automated Reasoning Has Many Applications

formal verification

train safety exploit
generation

automated
theorem proving

bioinformaticssecurity planning and
scheduling

term rewriting

termination

encode decodeautomated reasoning
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Breakthrough in SAT Solving in the Last 20 Years

Satisfiability (SAT) problem: Can a Boolean formula be satisfied?

mid ’90s: formulas solvable with thousands of variables and clauses
now: formulas solvable with millions of variables and clauses

Edmund Clarke: “a key
technology of the 21st century”
[Biere, Heule, vanMaaren, and Walsh ’09]

Donald Knuth: “evidently a killer app,
because it is key to the solution of so

many other problems” [Knuth ’15]
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Progress of SAT Solvers
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Recent Advances at SAT Competitions

Dozens of solvers participate in the annual SAT competition

A new idea contributes to winning the competition

Winner 2017: Clause minimization during search
[Luo, Li, Xiao, Manyá, and Lü 2017]

Winner 2018: Chronological backtracking
[Nadel and Ryvchin 2018]

Winner 2019: Multiple learnt clauses per conflict
[Kochemazov, Zaikin, Kondratiev, and Semenov 2019]
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Motivation

Automated reasoning tools may give incorrect answers.

Documented bugs in SAT, SMT, and QSAT solvers;
[Brummayer and Biere, 2009; Brummayer et al., 2010]

Claims of correctness could be due to bugs;

Misconception that only weak tools are buggy;

Implementation errors often imply conceptual errors;

Proofs now mandatory in some competitive events;

Mathematical results require a stronger justification than a
simple yes/no by a tool. Answers must be verifiable.
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Verified Solving versus Verified Proofs

Verifying efficient automated reasoning tools is a daunting task:

Tools are constantly modified and improved; and

Even top-tier and “experimentally correct” solvers turned
out to be buggy. [Järvisalo, Heule, Biere ’12]

Various simple solvers can verified, but they lack performance

DPLL [Shankar and Vaucher ’11]

CDCL [Fleury, Blanchette, Lammich ’18]

Validating proof is the more effective approach

Solving + proof logging + proof verification is much faster
compared to running a verified solver

One verified tool can validate the results of many solvers
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Initial Challenges

Theoretical challenges:

Some “simple” problems have exponentially large proofs in
the resolution proof system [Urquhart ’87, Buss and Pitassi ’98];

While some dedicated techniques can quickly solve them.

Solution: A proof system to compactly express all techniques.

Practical challenges:

Earlier efforts failed due to complexity and overhead

Convince developers to support proof logging

Solution:

The computational burden and complexity is in the checker

A reference implementation of proof logging
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Arbitrarily Complex Solvers

Verified checkers of certificates in strong proof systems:

Don’t worry about correctness or completeness of tools;

Facilitates making tools more complex and efficient; while

Full confidence in results. [Heule, Hunt, Kaufmann, Wetzler ’17]

Formally verified checkers now also used in industry
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Formally-Verified SAT Solving Tool Chain

1: encode 2: re-encode

3: solve

4: optimize

5: validate

problem

original
formula

re-encoded
formula

re-encoding
proof

refutation
proof

optimized
proof

The validate step uses a formally-verified checker;

Ideally the encoding step is also formally-verified;

The other steps can be heavily optimized and unverified.
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Dealing with Enormous Case Splits

What makes a problem hard?

The numbers angle: how many cases need to be explored?

The Four Color Theorem: Every map is colorable with 4 colors!

Hard for humans as many
cases need to be considered

Computers can systematically
check them all

www.cs.cmu.edu/∼bryant/boolean/US48 colored balance.jpg

Some hard problems have a trillion or more cases

How to effectively parallelize computations?
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SAT Solver Paradigms

Conflict-driven clause learning (CDCL): Makes fast decisions
and converts conflicting assignments into learned clauses.

Strength: Effective on large, “easy” formulas.

Weakness: Hard to parallelize.

Look-ahead: Aims at finding a small binary search-tree by
selecting effective splitting variables via looking ahead.

Strength: Effective on small, hard formulas.

Weakness: Expensive.
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Portfolio Solvers

The most commonly used parallel solving paradigm is portfolio:

Run multiple (typically identical) solvers with different
configurations on the same formula; and

Share clauses among the solvers.

F CDCL

CDCL

CDCL

The portfolio approach is effective on large “easy” problems,
but has difficulties to solve hard problems (out of memory).
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Cube-and-Conquer [Heule, Kullmann, Wieringa, and Biere ’11]

Cube-and-conquer splits a given problem into millions of
subproblems that are solved independently by CDCL.

P

CDCL

P1

CDCL

P2

CDCL

. . .

CDCL

PN−1

CDCL

PN

Efficient look-ahead splitting heuristics allow for linear
speedups even when using 1000s of cores.

Cube-and-conquer recently integrated in Z3
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The Hidden Strength of Cube-and-Conquer

Let N denote the number of leaves in the cube-phase:

the case N = 1 means pure CDCL,
and very large N means pure look-ahead splitting.

Consider the total run-time (y-axis) in dependency on N (x-axis):

typically, first it increases, then
it decreases, but only for a large number of subproblems!

Example with Schur Triples
and 5 colors: a formula with
708 vars and 22608 clauses.

The performance tends to be
optimal when the cube and
conquer times are comparable.
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Reasoning in the Cloud
Automated reasoning as a service:

Solves problems from easy to hard;

Can provide correctness proofs;

Explains the solution and/or method.

Joint work with Siemens to fully explore
the design space of gearboxes.

The NFL would like to have a cloud ser-
vice to produce their schedules and they
provided interesting test cases.
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Conclusions and Challenges

We can have full confidence in the correctness of SAT solvers:

All top-tier solvers emit proof logging (also for re-encoding)

Formally-verified tools can efficiently certify the proofs

How to lift this success to richer logics (SMT/HWMC/FOL)?

Linear speedups are possible on a range of problems

Even when using 1000s of CPUs;

And the enormous proofs can be validated in parallel.

Various challenges:

Make the techniques effective on a broader range of problems

Expand the potential users: automated reasoning in the cloud

Explainable automated reasoning to increase understanding
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