
Case Study of Building Machine Learning for Cyber-Physical Systems
William Grant Hatcher, Fan Liang, Jarrett Booz, Josh McGiff, Chao Lu and Wei Yu

Cyber-Physical Networked System and Security Research Laboratory

Department of Computer and Information Sciences, Towson University

Web: http://wp.towson.edu/wyu Email: wyu@towson.edu

Acknowledgement: NSF CAREER Award - CNS-1350145

.

Overview

Research Focus

Our Contributions

 Develop learning methodologies for classification and prediction for systems of

constrained devices, including model training and evaluation procedures.

 Mechanisms include shallow learning, deep neural networks, multimodal learning, time-

series forecasting, parameter optimization, and machine learning software infrastructures.

 Apply learning methodologies to typical CPS smart-world systems such as smart

grid, smart home, smart city, etc. in practical experiments.

 Evaluate monitoring and control mechanisms and security concerns in smart grid and

smart home scenarios as case studies, with consideration for power usage efficiency and

prediction, as well as vulnerabilities of smart mobile devices and operating systems.

Methodology

Online Learning for Energy Usage Prediction
Step 1. Implement Long-Short Term Memory (LSTM) recurrent neural network model

and evaluate accuracy, adjusting the input features of datasets and hyperparameters.

Step 2. Develop an online training model, using a data subset for training, saving the

model when it meets the desired accuracy requirement.

Step 3. Retrain the saved model after a time interval using newly generated data.

Step 4. Compare the performance of offline and online deep learning.

 Cyber-physical Systems (CPS) integrate computing, network communication, and

control to facilitate smart-world systems.

 The interconnection of sensing and actuating devices in the Internet of Things (IoT)

creates new uncertainties and countermeasures must be developed.

 Deep Learning is an emerging tool with the power to conduct data analysis to address

uncertainties.

 In this research, we have conducted a survey of deep learning platforms and

applications and applied deep learning to handle typical CPS functions, including

monitoring and control (energy demand prediction) and security (malware detection

and prediction), developing appropriate system frameworks and evaluating a variety

of learning mechanisms and relevant technologies.

 Datasets Preparation

 Our dataset consists of one year of smart meter data collected every half-hour.

 We select the first four weeks (1,344 datapoints) as the training dataset, week five (366

data points) as the short-term testing set, and week seventy-three as the long-term

testing set. We also compare the full year as the training set.

 The dataset has four features (Power Usage, Date, Time, and Day Type), and

Temperature has been collected and added to improve accuracy.

 Deep Learning Model

 Use the Long-Short Term Memory (LSTM) neural network, which includes both work

memory (𝑤𝑚) and long-term memory (𝑙𝑡𝑚). The activation function is tanh.

 Evaluation

 We evaluate both Mean Average Error (𝑀𝐴𝐸) and Mean Square Error (𝑀𝑆𝐸) to assess

accuracy, as well as compare running times.

Online Training Prediction

Online Training Prediction with More Feature

MAE MSE

Training Testing Training Testing
Average Training

Time (s)

Short-term 3.134 3.798 11.869 18.195

27.75

Long-term 3.433 10.934 11.012 43.553

Full Year 1.393 2.015 6.328 12.072 231.37

Online 2.137 3.331 7.129 17.229 5.35

Table 1. Evaluation Results

 Designing, implementing, and evaluating an online deep learning strategy to predict

energy consumption, deploying the training process to the network edge.

 Developing an approach to optimize deep learning for smart meter power

consumption forecasting via feature selection and model design.

 Optimizing deep learning training through model, hyperparameter, and learning

backend selection, and constructing a framework for remote cloud-based training.

 Evaluating multimodal data strategies for deep learning-based malware detection.

Evaluation Results

Short-term Prediction

Long-term Prediction

 Online training improves long-term prediction, and adding the temperature attribute

later in the online training process further improves the prediction accuracy.

 Short-term prediction results via traditional non-online methods show good short-

term but poor long-term prediction.

 Parameter tuning via grid search

generally increases accuracy with more

neurons. The best performance was 45

neurons with the Nadam optimizer.

 Accuracy for the best performers

reached about 95%.

 Evaluation of deep learning backend

libraries TensorFlow, Microsoft

Cognitive Toolkit (CNTK), and

Theano:

 CNTK and Theano are much slower

than TensorFlow.

 CNTK and Theano can reach higher

accuracies, but these results are

marginal and unpredictable.

 Multimodal learning revealed that the

inclusion of both Features and

Permissions increases accuracy.

 Multimodal input shows marginal

accuracy as well as minor

improvements in training time.

Android Malware Classification and Detection

Tools and Testbed
 Keras: a high-level python library that serves as API to support a variety of machine

learning libraries.

 TensorFlow: an open source software library for high-performance datfaflow

computation.

 An edge/cloud computing framework was designed to train dense neural networks

offline. Strong computation resources allow for the comparison of model

configurations optimized by grid search over hyperparameters.

 The framework was constructed using Keras and other learning libraries for Python,

and conducted malware analysis via learning from Android application installation

(APK) files.

Methodology
 Extracted Android Permissions and Hardware Feature data from some 58,884 APK

packages (19,273 malicious, 38,941 benign) using Android Asset Packaging Tool

(AAPT) via bash script.

 Tuned neural network hyperparameters in groups: Epochs, Batch Size, Number of

Neurons, Optimizer, Dropout Rate, Weight Constraint, and Class Weight.

 Compiled multiple learning backends compatible with Keras for comparison.

 Designed five neural network shapes to compare performance of separate versus

continuous input layers of Permissions and Hardware Features.

Evaluation Results

 Our online retraining strategy shows

that continuous updates significantly

reduce the storage demands on

constrained devices & training time.

 MAE (Mean Absolute Error) and

MSE (Mean Squared Error) of

online retraining closely matches

those of training with the full year

dataset with a greatly reduced time

cost.

