Challenges in Future Automobile Control Systems
with Multicore Processors

Dakai Zhu and Chunjiang Qian

University of Texas at San Antonio

1 Introduction

Modern vehicles have become increasingly computerized to satisfy the more strict safety require-
ments and to provide better driving experiences. Therefore, the number of electronic control units
(ECUs) in modern vehicles has continuously increased in last few decades (e.g., some luxury cars
can have up to 100 ECUs). In addition, advanced functionalities (e.g., collision avoidance and
adaptive cruise control) put higher computational demand on ECUs, which further increases the
design complexity of automotive control systems. Multicore processors, where multiple processing
units are integrated on a single chip, have emerged to be the main computing engine not only for
high-end servers but also for embedded control systems. For instance, some multicore processors
have been recently developed for automotive ECUs [3, 11].

With multicore processors, more centralized architecture designs can be adopted for automotive
control systems. That is, instead of having many ECUs following the traditional approach of “one
function per ECU”, we can have a few powerful multicore ECUs and each of them integrate the
functionalities of several single-core ECUs from the same or similar domains (e.g., powertrain and
body). The recent initiative on AUTOmotive Open System ARchitecture (AUTOSAR) has estab-
lished several standards for automotive software and hardware designs, which include guidelines
for designing centralized architecture with multicore ECUs for automotive control systems [2, 5].
With AUTOSAR, it is expected that computational control tasks of different functions can share
one ECU or run on any ECU connected with in-vehicle network (e.g., CAN and FlexRay).

Although multicore processors provide great opportunities to mitigate the design complexity
of automotive control systems with reduced number of ECUs, the integration and scheduling of
different control tasks on multicore ECUs also bring various challenges. In what follows, we first
discuss the challenges for designing the hardware architecture with multicore ECUs. Then, we will
address the benefits and scheduling issues within multicore ECUs and across in-vehicle networks.

2 Multicore Domain Control Units (MDCUs)

Following the “one function per ECU” design paradigm, the number of ECUs in modern vehicles
is typically around 50 to 70, ranging from basic safety-related functions (e.g., ABS and engine and
transmission control) to auxiliary and advanced functions (e.g., navigation and collision avoidance
systems) [1]. With increased computation power in modern processors, the control tasks from



several ECUs can be integrated and processed on a single powerful ECU. For instance, engine and
transmission control units have been merged to be the powertrain control module [1]. With the rich
computation power of multicore processors, it can be expected that more control tasks from the
same or similar domains will be integrated and run on a multicore domain control unit (MDCU).
Therefore, instead of having nearly 100 ECUs, depending on the integration levels, future vehicles
may have around 10 to 20 MDCUs assuming that each MDCU has 4 to 8 processing cores, which
are connected through CAN or FlexRay network, as illustrated in Figure 1.

= == T =a oo |
mbcu -7 Corel | ------ CoreN
. | . MDCU
g | \ 2
links
c N LMY fa N o
G J N A ‘ interface 1/0 ‘ """ ‘ interface |/O ‘

Figure 1: Automotive control system architecture with MDCUs

However, considering the diverified control functions for various vehicle components, such in-
tegration brings many challenges and requires careful design and verification. For instance, in
addition to the computational requirements of control tasks from different ECUs, the physical lo-
cations of the corresponding sensors and actuators should also be considered. Moreover, critical
control tasks may need to be integrated with non-critical auxiliary tasks to increase management
flexibility and fault tolerance as discussed in the next section.

3 Scheduling Challenges for Automotive MDCUs

The performance interference between tasks running currently on multicore processors due to im-
plicitly shared resources (such as caches) makes runtime analysis very difficult [9, 10], which has
been the main obstacle to adopt multicore processors in real-time control systems. Following the
AUTOSAR specifications, several software development and scheduling schemes have been stud-
ied very recently [6, 7, 8], where the state-of-the-art solutions are based on the static partitioned
approach to assign control tasks to individual processing cores offline. Such resulting static cyclic
schedules greatly limit the flexibility and system utilization efficiency.

Note that, the inherent hardware redundancy provides excellent opportunities for fault tolerance
and one recent research also addressed the safety issues in multicore powered ECUs [4]. For
critical control tasks (e.g., engine control and ABS), we may process them on more than one cores
to increase their reliabilities. Moreover, instead of statically assign tasks to fixed cores, we can
explore adaptive and global scheduling schemes to disable the non-critical tasks while ensuring the
computational requirements of critical ones in case some cores within a MDCU fail. If the MDCU
fails, the coordinated scheduling schemes can also dynamically re-map and migrate critical control
tasks to other healthy MDCUs appropriately. Such flexibility can greatly increase the dependability
of the automotive control system. In addition, by adopting the optimal global scheduling schemes
(such as Pfair-like algorithms), better system utilization can also be achieved.

Considering the increased delay for sensor input and control signals in MDCUSs architecture, we
should consider the control system stability when determining the scheduling policy and timing

2



parameters for control tasks. With more control signals being delivered through the in-vehicle
network, the co-scheduling of the signals on the communication links and tasks on processing
cores in MDCUs becomes more important and thus demands more research efforts.

Bio for the Authors

Dakai Zhu is currently an Assistant Professor in the Department of Computer Science at the
University of Texas at San Antonio. He received the Ph.D. degree from the University of Pitts-
burgh in 2004. His research interests include real-time systems, power aware computing and
fault-tolerant systems. Dr. Zhu was a recipient of the NSF CAREER Award in 2010. Email:
dzhu@cs.utsa.edu; Phone: 210-458-7453.

Chunjian Qian is currently an Associate Professor in the Department of Electrical and Com-
puter Engineering at the University of Texas at San Antonio. He received the Ph.D. degree
from the Case Western Reserve University in 2001. His research interests include control the-
ory (e.g., nonlinear, robust, adaptive and real-time optimal control), hybrid control systems and
cyber physical systems. Dr. Qian was a recipient of the NSF CAREER Award in 2003. Email:
chunjiang.gian@utsa.edu; Phone: 210-458-5587.

References

[1] Automotive electronic systems, available at http://www.cvel.clemson.edu/auto/, 2010.
[2] Autosar (automotive open system architecture), http://www.autosar.org/., 2010.
[3] J. Brodt (NEC Electronics America). Revving up with automotive multicore; http://www.edn.com/, 2008.

[4] C. Aussagues, D. Chabrol, V. David, D. Roux, N. Willey, A. Tournadre, and M. Graniou. Pharos, a multicore os
ready for safety-related automotive systems: results and future prospects. In Proc. of The Embedded Real-Time
Software and Systems (ERTS?), May 2010.

[5] F. Kluge, C. Yu, J. Mische, S. Uhrig, and T. Ungerer. Implementing autosar scheduling and resource management
on an embedded smt processor. In Proc. of th 12th Int’l Workshop on Software and Compilers for Embedded
Systems (SCOPES), pages 33-42, 2009.

[6] H. Kopetz, R. Obermaisser, C.E. Salloum, and B. Huber. Automotive software development for a multi-core
system-on-a-chip. In Proc. of 4th Int’l Workshop on Software Engineering for Automotive Systems, 2007.

[7] A. Monot, N. Navet, F. Simomot, and B. Bavoux. Multicore scheduling in automotive ecus. In Proc. of The
Embedded Real-Time Software and Systems (ERTS?), May 2010.

[8] N. Navet, A. Monot, B. Bavoux, and F. Simonot-Lion. Multi-source and multicore automotive ecus: Os protec-
tion mechanisms and scheduling. In Proc. of IEEE Int’l Symposium on Industrial Electronics, Jul. 2010.

[9] S. Schliecker, M. Negrean, and R. Ernst. Response time analysis on multicore ecus with shared resources. IEEE
Trans. on Industrial Informatics, 5(4):402 — 413, 2009.

[10] S. Schliecker, J. Rox, M. Negrean, K. Richter, M. Jersak, and R. Ernst. System level performance analysis
for real-time automotive multicore and network architectures. IEEE Trans. Comp.-Aided Des. Integ. Cir. Sys.,
28(7):979-992, 2009.

[11] P. Leteinturier (Infineon Technologies). Multi-core processors: Driving the evolution of automotive electronics
architectures; http://www.embedded.com/design/multicore/, 2007.



