

Fog/Edge: Architecture and Applications

Mung Chiang

Dean of College of Engineering, Purdue University

Founding Director, Princeton EDGE Lab

Founding Board Member, OpenFog Consortium

@OpenFog #fogcomputing

Distribute Functions along C2T Continuum

- Architecture is "Horizontal Foundation":
 - Who does what, at what timescale, how to glue them together?
 - Allocation of functions, not just resources

- Architecture supports Applications:
 - Source-channel separation: Digital communication
 - TCP/IP: Internet applications
 - Fog:
 IoT / 5G / Dispersive AI

Decomposition and Interfaces

Massive storage
Heavy duty computation
Global coordination
Wide-area connectivity

Real time processing
Rapid innovation
Client-centric
Edge resource pooling

Example: Shred and Spread (Myota)

- Client-driven data processing for privacy protection and reliability
 - Scatter files to multiple fog storages
 - Client-side data deduplication
 - Obfuscated data in storages

File chunking for data deduplication

Chunk
encoding/spreading
for privacy and
reliability

4

Example: Smart Data Pricing (DataMi)

Example: Fogonomics (Smartiply)

To Fog or Not to Fog: SCALE

- Security
- Cognition
- Agility
- Latency
- Efficiency

Applications to "Dispersive AI"

- Design machine learning algorithms that support fast responses
 - > Enable IoT/CPS systems with intelligence here and now
- Decompose machine learning into multiple geographically distributed components, collectively or jointly operating
- Proactively pre-position content and computing
 - Parallel successive refinement for streaming mining

Case 1: New "MapReduce"

Case 2: Multi-Agent Reinforcement Learning

- Decentralized decision making by team of edge devices
 - Enable coordination towards common goal
 - Learn to act in an a priori unknown environment
- Augmenting RL algorithms with inter-agent communication
 - Information heterogeneity about the state of the environment
 - Informed agent 1 shares true state with a less informed agent 2

Promises and Pitfalls

Is current policy parameter θ such that the agent's policy places highest probability on the optimal action?

Yes: Improves learning of both agents

No: degrade learning in early stages

⇒ Delayed sharing might be better: wait for policies to improve, then start sharing

Unique Features in Edge/Fog

- Heterogeneity/Under-organization of resources/devices
- Variability/Volatility in availability/mobility
- Bandwidth/Battery constraints
- Proximity to sensors/actuators

