From Cloud to Edge: Advances in Mobile Al

Dr. Aakanksha Chowdhery Software Engineer ML, Google Brain chowdhery@google.com

machines in 2010

humans

machines today

~25% errors

5% errors

~3% errors

Deep Learning ML Use Cases

Computer Vision and Image Understanding Speech and Language Understanding Text Understanding Gesture Recognition

Mobile AI is Important

But hard ...

Tight memory constraints Low energy usage to preserve batteries Little compute power

Key Advances in Mobile Al

Lightweight ML platforms Accelerators for ML computations Model optimization Privacy/Security

TensorFlow Lite

TensorFlow's solution for running on-device machine learning with low latency & a small binary size on many platforms.

TensorFlow Lite is **portable**

- iOS, Android
- Raspberry Pi or other Linux SOCs
- Micro-Controllers
- Works on PCs too

TensorFlow Lite is optimizable

- Selective Registration
- CPU kernel fusion
- Optimized SIMD kernels

TensorFlow Lite Designed for speed

Interpreter Core

Operation Kernels

Hardware acceleration delegates

TensorFlow Lite connects with accelerators

- GPUs
- Edge-TPUs!
- NNAPI-supported accelerators

TensorFlow Lite Edge TPU[™] DESIGNED FOR SPEED

Google's Al ecosystem for the Edge

High performance in small footprint

High performance/Watt

Enable broad deployment of high-quality Al Available in a Edge TPU Dev kit in Q4 2018

Mode Optimization Toolkit

Model Optimization

SMALLER, FASTER MODELS

What it means?

- Alter the original graph topology into a more efficient one with reduced parameters and/or faster to execute (i.e. distillation)
 - Reduce parameter precision (e.g. network weights, pruning).
 - Execute operations between the static parameters and dynamic inputs/activations.

Why optimize models? SMALLER, FASTER MODELS

BALANCING ACT

Memory vs Computation vs Accuracy

Model Optimization Toolkit SMALLER, FASTER MODELS

Quantization

Pruning / sparsity

0	0	7	4	
9	6	0	0	
0	0	1	3	
2	3	0	0	

Privacy Challenges

Security & IP Protection: On-device model use risks

- 1. Unauthorized model use and duplication
- 2. Reversing of model data

Model watermarking and fingerprinting

Original model with special pattern embedded

Stolen model with modifications

Conclusions

Key Advances in Mobile Al

Lightweight ML platforms Accelerators for NN computations Model optimization Privacy/Security

Get it. Try it.

Code: github.com/tensorflow/tensorflow Docs: tensorflow.org/lite/ Discuss: tflite@tensorflow.org mailing list