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Enabling Distributed Unsupervised Scene Understanding in 
Low Bandwidth Environments

Challenge
• Unsupervised learning based 

approaches can be used to 
characterize unknown 
environments

• Scaling to multiple robots 
requires learning terrain labels 
that are consistent across robots

Scientific Impact
• Enables an exploration and 

monitoring approach that is 
robust under communication 
bottlenecks

Solution
• Use CLEAR, a spectral 

clustering based approach to 
match labels between robots

• Suitable for online use and 
multiway matching 

Broader Impact
• Space and ocean exploration
• Collaboration with marine 

ecologists
• Graduate and undergraduate 

student training
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(a) Ground truth segmentation. (b) Ours (CLEAR Based).

(c) Hungarian matching. (d) ID-Based matching.

Fig. 5. Sample fused maps from each multi-robot matching approach with
all 12 robots, alongside the ground truth segmentation, for Environment #2.
Note that each map has been manually colored (1 color per label) with the
same palette to ease comparison. Our approach most accurately captures
the variation in terrain and coral species present in each quadrant.

VI. RESULTS & DISCUSSION

Figure 4 shows the performance of the proposed system
using CLEAR compared to using other baseline matching
solutions, or a single robot, measured by the AMI of the
fused map with the ground truth semantic map produced by
AirSim. While the performance of the other matching algo-
rithms declines as more robots are fused, the performance
of the proposed matching solution increases or stays steady.
This happens because CLEAR leverages redundant edges in
the noisy association graph, added by additional robots, to
help compensate for incorrect edges. The number of incorrect
edges at each vertex grows slower than the number of correct
edges as topics are added, so our system is able to find a
better solution when more robots’ maps are fused.

In the first test environment, Fig. 4a, the fused map
quality of the proposed approach goes from about 10%
lower than the semantic map produced by a single robot
to about 10% higher as more robots are fused. This is
excellent performance considering that the robot team was
able to map the entire environment in 1/12th the amount of
time.2 Compared to the Hungarian matching approach, the
proposed system achieves about 23% higher AMI scores; as
shown in Fig. 5, this is primarily because CLEAR is better
suited to recognize when different robots have observed
distinct phenomena. In the second test environment, Fig. 4b,
this difference was magnified as there was very little in
common between what any pair of robots observed. Table I

2The single robot performance started to decline in environment #1
because it saw so much sand (blue in Fig. 5a) after covering 4 local maps
that it tended to develop separate topics for different shades of sand.

TABLE I. Semantic Mapping Performance with 12 Robots.

MEAN AMI SCORE (STD. DEV.)
Matching Alg. Distance Metric Env. #1 Env. #2

ID-Based N/A 0.117 (0.035) 0.078 (0.016)
Hungarian L1 Distance 0.297 (0.006) 0.216 (0.004)

L2 Distance 0.313 (0.016) 0.253 (0.039)
Cosine Distance 0.304 (0.011) 0.203 (0.015)

CLEAR TO Similarity 0.250 (0.002) 0.341 (0.003)
Cosine Similarity 0.384 (0.006) 0.406 (0.007)

Single-Robot (No Matching) 0.344 (0.026) 0.382 (0.024)

Fig. 6. The fused map quality varies throughout each experiment; shown
here is how the fused map quality changes as the robots explore environment
#2. The increase in performance across all methods is caused by each robot’s
topic model improving over time with more data.

summarizes numerical results for the map quality after fusing
all 12 local maps together with each matching algorithm
and for various similarity/distance metrics. Based on these
results, the other plots used Cosine similarity for CLEAR
matching and L2 distance as the Hungarian cost metric.

As seen in Fig. 6, as the team explores environment #2
the fused map quality is mostly constant after each robot has
collected 125 images, i.e., covered half of its assigned area.
This suggests that environment #2 would be most efficiently
explored using 24 robots; in general, the optimal number will
depend on the size and complexity of the environment.

VII. CONCLUSIONS

We have presented a novel multi-robot distributed seman-
tic mapping system that produces accurate semantic maps
even when fusing maps from many robots and when each
robot is building its semantic model online with no pre-

training. The proposed topic matching approach results in
20-60% higher map quality than the next best technique,
with the largest gains in mapping complex and diverse
environments, and the approach uses less communication-
bandwidth than the previous state-of-the-art [23]. The fused
maps are suitable for the human operator to use as a summary
of the mission observations and for informative path planning
algorithms. We finds that the fused maps approximate the
quality of the best single-robot maps, hence further per-
formance increases will likely come from improving the
spatiotemporal topic modelling component. The presented
system for accurate topic matching over low-bandwidth en-
ables novel multi-robot distributed autonomous exploration
capabilities that should be explored in future work.
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The CS metric is about as efficient to compute as TO, but
assigns a higher score when �1 and �2 are very similar and
a lower score when they are very dissimilar. This makes CS
a better choice since the stochastic nature of topic models
means that every topic descriptor �k is fluctuating throughout
the mission, so at any time two topics with the same semantic
meaning are likely to have slightly different descriptors.

C. Sufficient Topic Similarity Threshold Estimation

In general, a good threshold for considering any two topics
to be “sufficiently similar” will depend on factors including
the similarity metric used and topic model hyperparame-
ters, and possibly on the subjective opinion of the human
operators. It is difficult to choose a matching threshold �
analytically because the expected topic growth rate and aver-
age inter-topic similarity are complicated nonlinear functions
of the topic model hyperparameters. A simple solution for
choosing � is to collect a validation set of topics developed
by robots in past missions, for which the human operator can
infer their semantic meanings, and then tune � low enough
that the algorithm merges as many topics with the equivalent
meanings as possible but high enough that it does not match
distinct topics. In the training dataset used to choose the
topic model hyperparameters, to be described in Section V,
a threshold of � = 0.75 was found to work well with both
topic similarity metrics (TO and CS).

D. Constructing the Noisy Association Graph

The TO and CS scores are symmetric and bounded simi-
larity metrics, where the minimum score of 0.0 indicates two
topics have no words in common, and the maximum score of
1.0 indicates that two topics are exactly the same. In practice,
any scoring is “noisy” in that two topics which a human
would judge to have the same semantic meaning will not
necessarily have a similarity score of 1.0, and likewise topics
with very different semantic meanings will not necessarily
have a similarity of 0.0.

We use the chosen similarity metric s to construct the
pairwise similarity graph, a weighted and undirected graph in
which vertices represent topics and the edge weights are the
similarity of the adjoining vertices. The pairwise similarity
graph can be simplified by removing edges with weights
below some threshold � 2 (0, 1), which represents low
similarity, and setting weights above � to 1. The resulting
unweighted noisy association graph contains only edges
between good topics to match. However, even if the threshold
� is chosen well, it may not be obvious from this graph how
many unique topics should be used in the final map, or which
sets of topics would form a consistent matching (see Fig. 2).

E. Rectifying the Noisy Association Graph

When visualized as a graph where vertices represent topics
and edges represent matches, a consistent matching has the
structure of a cluster graph. This is a graph composed
of disjoint fully-connected components, so that any two
topics in the same component are matched and no topics
are matched between components. In this cluster graph, the

(a) Environment # 1. (b) Environment # 2.

Fig. 3. Top-down views of the two simulated test environments used in
the experiments. Each map is approximately 250m⇥250m, and contains a
rich variety of coral species, seaweed, and rocks.

number of distinct topic labels developed by the entire robot
team is equal to the number of disjoint components.

CLEAR [32] is a spectral clustering algorithm that effi-
ciently estimates the closest cluster graph to a noisy associa-
tion graph (see Fig. 2, CLEAR Rectification). The Laplacian
L of the noisy association graph is a matrix defined in terms
of the graph adjacency matrix A and degree matrix D is
defined as L = D �A, where

[A]ij =

(
1, s (�i,�j) � �

0, otherwise

[D]ij =

(PN
k=1 [A]ik , i = j

0, otherwise

CLEAR uses a special normalization of the Laplacian
based on the degree matrix plus identity, denoted by Lnrm,
to identify clusters of semantic labels with high pairwise
similarity in the noisy association graph [32]. The number of
eigenvalues of Lnrm that are less than 0.5 is a robust estimate
of the number of global labels, |ZG

t |. CLEAR then uses the
eigenvectors of Lnrm to find a consistent set of label matches
⇧t. A key reason for choosing CLEAR is that it is one of
the fastest algorithms that can perform multiway matching
with high accuracy.

V. EXPERIMENTAL METHODOLOGY

The proposed consistent online topic matching system was
evaluated using photorealistic semantic mapping experiments
in two unique high-resolution 3D simulated coral reef envi-
ronments produced in the Unreal Engine [35]. A top-down
view of each simulated environment is presented in Fig. 3.
In each experiment, a team of 12 simulated robots traversed
one of the two environments and each collected 250 RGB-
D observations using the AirSim plugin [36]. AirSim also
acted as the simulated human operator by providing the
ground truth semantic segmentation for each image. Each
robot was given noiseless localization information and ran
an updated implementation of the “Sunshine” spatiotemporal
topic model, which was capable of generating higher quality
maps in less time than the earlier version presented in [19].
Throughout the experiment, sets of 1 to 12 local maps were
randomly chosen from the across the team and fused together
using the approach described in Section IV. Each experiment
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Simulated underwater exploration with 12 robots in a 250mx250m patch 
results in 20-40% high quality maps (Mutual Information)

Test environment
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