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Figure 6: Message passing in the proposed centralized and decentralized distributed scene understanding
techniques. Here ri are the robots, rtop is the surface node, Φ is the scene model, describing the appearance
of each learned scene type, Θ is the scene map describing the distribution of scene types at each location,
and Φ∼,Θ∼ are bandwidth dependent approximations.

casts an approximation to them to all the robots, and receives deltas to the scene model from
the exploring robots as point-to-point messages (Fig. 6(a)). These deltas are then applied to
the global model. Newman et al. [48] proposed a similar approach to learn topic models using
multiple processors on a computer, but without the use of approximate messages. Proposed
research will analyze the effect of approximating the topic model update messages on the model
convergence.

3. Decentralized scene model : In decentralized mode, each robot runs its own scene model,
which is synchronized with other robots via regular broadcasts of a bandwidth dependent
approximation to its scene model (Fig. 6(b)). When a node receives a broad-casted message,
it is merged into the current topic model by either mapping the topics to existing topics,
or creating new ones. The proposed research will evaluate various approaches for merging
the scene models. The greedy topic matching strategy proposed by Newman et al. [48] is
not appropriate for this situation because it will result in double counting. Instead, we will
examine other approaches for merging matching topics such as taking the mean distribution,
or simply choosing the topic with more observations.

These topic modeling approaches can be evaluated by computing the mutual information [11]
of topics labels with annotations provided by experts, and also by computing the model perplexity.

4.4 Communication Channel Modeling

Communication is an essential component of field robotics. The underwater domain, however,
presents unique challenges — specifically that the strong attenuation of radio signals prevents the
use of radio-based wireless communication typically used in land and aerial robotics. Underwater
acoustics is the most viable wireless communication method for most networks of underwater ve-
hicles, due to typical spatial node separations being much larger than an underwater optical link
can support (less than 150m due to strong scattering of light in water), and due to the energy
and time costs for a deep autonomous underwater vehicle (AUV) to surface to use a radio link.
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Motivation: 
This project aims to develop an approach to co-robotic exploration of unknown 
environments with a team of robots, to aid in the discovery and mapping of scientific 
phenomena, in extreme environments such as the deep sea where autonomous robots 
operate under strong communication bottlenecks. The proposed robotic approach aims 
to use a Bayesian nonparametric scene model to learn high level scene descriptors, 
which can then be used to for efficient robot-robot and human-robot communications. 
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Scene Model: 
The generative model for the observed data 
is described as following. At time t,  we 
observe a discrete observation w at a noisy 
location (x, y), modeled as a random sample 
from a Gaussian centered around the true 
position (x', y'). We model the distribution of 
scene labels with a spatially correlated 
Chinese Restaurant Process (CRP), and the 
distribution of visual features describing each 
scene label with a Dirichlet distribution.

Robot System: 
The proposed co-robotic exploration system consists of an autonomous surface vehicle 
responsible for localizing the AUVs and acting as the communication relay; and one or 
more AUVs equipped with a multitude of sensors and on-board processing power to 
enable in-situ scene understanding. As shown in the figure below, (left) the AUV is 
equipped with bandwidth heavy sensors such as stereo cameras and side scan sonars, 
in addition to, an echosounder (altitude sensing), acoustic modem, and three computers, 
two of which have GPUs for computing scene maps in realtime. The topside vehicle 
(middle) has radios for communicating with the scientists, and a USBL array for acoustic 
communications and robot localization. Both the AUV and the ASV working together 
(right) enable the operation of the system even when the the AUV is outside the acoustic 
comms range of the topside operator.
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Fig. 4. Examples of randomly generated scenes by the proposed spatially correlated Chinese Restaurant Process. The hyperparameters � and ↵ can be
used to tune the generative model for scene with varying complexity in terms of number of different labels and patches.

that is used as an air-to-sea communication and localization
system to link the scientist to the robots; 2) an AUV
equipped with acoustic and optical imaging capabilities, and
sufficient computing power to generate concise scene maps
from complex high dimensional sensor data streams; 3)
Robot Operating system (ROS) based software architecture
to enable a compute graph that spans multiple computers,
and optionally multiple robots when operating in tethered
mode.

A. Surface Vehicle

The autonomous surface vehicle (ASV) is primarily re-
sponsible for acting as a communication and localization
relay for the AUV. It is equipped with an Ultra Short
Baseline (USBL) acoustic positioning and communication
system (shown in Fig. 5 bottom-right) to communicate
with the underwater robot, and a high speed RF radio to
communicate with the scientist on-board the ship or on land.
The surface vehicle estimates its distance to the AUV, and
fuses a GPS location with the USBL estimate to provide
global localization information to the AUV. Furthermore,
the surface vehicle is capable of autonomously following

the underwater robot to stay directly above it, maximizing
bandwidth and localization accuracy. Peak throughput of the
acoustic communication system is about 10kbit/sec over 1km
range, using the 18-34KHz band.

B. Underwater Vehicle
The underwater vehicle (Fig. 5,1) is based on the

BlueROV2 platform, with the addition of stereo cameras
and side scan sonars for high resolution optical and acous-
tic imaging, an echosounder for altitude measurement, an
acoustic modem/USBL transponder, and two Jetson TX2
computers for on-board processing of sensor data stream. For
in-tank localization and testing, AprilTags [33] are employed.
BlueROV2 has open source hardware and software, and
is low cost, which makes it suitable for scaling the robot
system to multiple robots, and for easily adding new sensing
capabilities.

C. Software Architecture
The unsupervised approach to exploration relies upon on-

line robot-side scene modelling to construct a low-bandwidth
representation of its surroundings. This representation takes
the form of a time-varying scene map constructed from
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Abstract— Unsupervised learning techniques, such as

Bayesian topic models, are capable of discovering latent

structure directly from raw data. These unsupervised models

can endow robots with the ability to learn from their

observations without human supervision, and then use the

learned models for tasks such as autonomous exploration,

adaptive sampling, or surveillance. This paper extends

single-robot topic models to the domain of multiple robots.

The main difficulty of this extension lies in achieving and

maintaining global consensus among the unsupervised models

learned locally by each robot. This is especially challenging

for multi-robot teams operating in communication-constrained

environments, such as marine robots.

We present a novel approach for multi-robot distributed

learning in which each robot maintains a local topic model to

categorize its observations and model parameters are shared to

achieve global consensus. We apply a combinatorial optimiza-

tion procedure that combines local robot topic distributions

into a globally consistent model based on topic similarity,

which we find mitigates topic drift when compared to a

baseline approach that matches topics naı̈vely. We evaluate

our methods experimentally by demonstrating multi-robot un-

derwater terrain characterization using simulated missions on

real seabed imagery. Our proposed method achieves similar

model quality under bandwidth-constraints to that achieved by

models that continuously communicate, despite requiring less

than one percent of the data transmission needed for continuous

communication.

I. INTRODUCTION

Unsupervised machine learning techniques can enable
adaptive robotic systems that are robust to unexpected
changes in their environment. Furthermore, the operation
of robots in environments like the deep benthic sea, where
they may encounter species and terrains not previously
documented, demands the flexibility to novel observations
afforded by unsupervised learning. A team of underwater
robots capable of unsupervised scene categorization would
enable more efficient ocean surveying and exploration. How-
ever, because unsupervised learning methods do not have a

priori defined labels, combining the local models discov-
ered by individual robots into a globally cohesive model
is a hard combinatorial optimization problem. Achieving
a globally cohesive scene model is critical for both post-
mission analysis and so that multi-robot teams can make
better global planning and exploration decisions in real-time.
This paper presents a novel approach to multi-robot learning
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Fig. 1: Illustration of the multi-robot terrain charac-

terization problem. Each individual AUV builds its own
local topic model. Model parameters from all vehicles are
transmitted top-side via acoustic modem, where the models
must be combined into a consistent global model. However,
there is no guarantee that the individual robots will agree
on which visual category corresponds to each topic ID. This
correspondence issue must be addressed to achieve global
consensus.

that obtains a globally consistent scene categorization under
communication constraints, endowing a team of exploratory
robots with the ability to reach consensus in their semantic
description of the world.

In this work, we consider the problem of underwater ter-
rain characterization. Formally, given a sequence of images,
we would like to predict for each image the distribution over
a set of latent categories that generated the data. Previous
approaches to this problem for single robots [1] make use of
spatiotemporal variants of topic models like latent Dirichlet
allocation (LDA) [2] and the nonparametric hierarchical
Dirichlet process (HDP) [3]. The extension of these methods
to the multi-robot setting presents several challenges. We aim
to have every robot build a model that discovers thematic
structure within an image stream that coincides well with
human semantics, but also for each robot’s model to be
consistent with the other robots in a multi-robot exploration

Distributed Scene Understanding 
Problem: 
When multiple AUVs are exploring an environment, each 
individual robot builds its own local scene model. When IDs of 
these scene constructs (topics) are shared between robots 
and the topside operator, there there is no guarantee that the 
same IDs from different robots correspond to the same visual 
category.  
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learning in which each robot maintains a local topic model to

categorize its observations and model parameters are shared to

achieve global consensus. We apply a combinatorial optimiza-

tion procedure that combines local robot topic distributions

into a globally consistent model based on topic similarity,

which we find mitigates topic drift when compared to a

baseline approach that matches topics naı̈vely. We evaluate

our methods experimentally by demonstrating multi-robot un-

derwater terrain characterization using simulated missions on

real seabed imagery. Our proposed method achieves similar

model quality under bandwidth-constraints to that achieved by

models that continuously communicate, despite requiring less

than one percent of the data transmission needed for continuous

communication.

I. INTRODUCTION

Unsupervised machine learning techniques can enable
adaptive robotic systems that are robust to unexpected
changes in their environment. Furthermore, the operation
of robots in environments like the deep benthic sea, where
they may encounter species and terrains not previously
documented, demands the flexibility to novel observations
afforded by unsupervised learning. A team of underwater
robots capable of unsupervised scene categorization would
enable more efficient ocean surveying and exploration. How-
ever, because unsupervised learning methods do not have a

priori defined labels, combining the local models discov-
ered by individual robots into a globally cohesive model
is a hard combinatorial optimization problem. Achieving
a globally cohesive scene model is critical for both post-
mission analysis and so that multi-robot teams can make
better global planning and exploration decisions in real-time.
This paper presents a novel approach to multi-robot learning
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Fig. 1: Illustration of the multi-robot terrain charac-

terization problem. Each individual AUV builds its own
local topic model. Model parameters from all vehicles are
transmitted top-side via acoustic modem, where the models
must be combined into a consistent global model. However,
there is no guarantee that the individual robots will agree
on which visual category corresponds to each topic ID. This
correspondence issue must be addressed to achieve global
consensus.

that obtains a globally consistent scene categorization under
communication constraints, endowing a team of exploratory
robots with the ability to reach consensus in their semantic
description of the world.

In this work, we consider the problem of underwater ter-
rain characterization. Formally, given a sequence of images,
we would like to predict for each image the distribution over
a set of latent categories that generated the data. Previous
approaches to this problem for single robots [1] make use of
spatiotemporal variants of topic models like latent Dirichlet
allocation (LDA) [2] and the nonparametric hierarchical
Dirichlet process (HDP) [3]. The extension of these methods
to the multi-robot setting presents several challenges. We aim
to have every robot build a model that discovers thematic
structure within an image stream that coincides well with
human semantics, but also for each robot’s model to be
consistent with the other robots in a multi-robot exploration
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The proposed approach merges the scene model at the 
topside central node using the Hungarian algorithm, at a rate 
permitted by the available bandwidth, and then the 
broadcasts the merged model back to every robot. 

Tank Trials: 
We demonstrated the scene modeling approach in a controlled tank environment with an 
artificially constructed scene consisting of seaweed, stones, sand, grass, and a crab; 
and attempted to build a global scene map from the streamed data. The robot was 
localized using AprilTags and an external camera, mimicking the position information 
provided by the surface vehicle via GPS and USBL. The AUV was then instructed to 
follow a lawn-mower pattern in the tank. The downward facing stereo camera provided 
an RGB-labelled point cloud which were then streamed into the scene modeling system. 
Old data points are updated with new topic information even as new data points are 
processed using an online Gibbs sampler.

Simulated Coral Reef Exploration: 
We evaluated the ability of the proposed scene modeling approach to characterize a 
coral reef environment, given the bandwidth constraints. We used the HAW-2016-48 
dataset from the Scripps 100 Island Challenge project to simulate observations.
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Problem
We aim to develop teams of under-

sea exploration robots capable of cate-
gorizing seabed terrains. This is chal-
lenging due to:

• Unsupervised models like topic
models lack definitive “corre-
spondence” between categories

• Communication-constraints
underwater prevent high-
bandwidth solutions (e.g. trans-
mission of raw images)

We seek improved consistency be-
tween local topic models with limited
data transmission.

Figure 1: Two AUV’s must merge local topic
models via a central node (ship).

Finding Topic Correspondence
We leverage the per-topic word distribution given by �̂kw learned by each

vehicle as a descriptor of the topic. We then posit a heuristic distance between
these descriptors, given by:

D(�̂kw, �̂
0
kw) =

KX

k=1

k�̂kw � �̂0
kwk

2. (1)

Finally, we pose topic matching as a combinatorial optimization problem
where we seek to minimize the cost given by the total distance between top-
ics in (1). That is, the optimal topic permutation for robot r with respect to robot
1 is given as follows:

⇡⇤
r = argmin

⇡(�̂kwr)

f(⇡(�̂kwr)) (2)

f(⇡(�̂kwr)) =

KX

k=1

k⇡(�̂kwr)� �̂kw1k
2. (3)

In practice, we solve the optimization in (3) using the Hungarian algorithm
[2], which provides a solution for each vehicle in O(K3

), giving an overall algo-
rithm complexity for our algorithm of O(RK3

).

AUV 1 Topics

AUV 2 Topics

�̂1,1 �̂2,1 �̂3,1 �̂4,1

�̂1,2 �̂2,2 �̂3,2 �̂4,2

D(�̂1,1, �̂1,2)

Figure 3: Optimization in (3) visualized as a bipartite graph matching problem, solvable via the
Hungarian algorithm [2].

The complete algorithm is summarized below, where RefineTopics refers to the
Gibbs sampling procedure given in (5).

Algorithm AD-ROST-SIM
repeat

// Local model updates
for each robot r in parallel do

// Receive global counts Nkw

Nkwr  Nkw

for t from tcurr to tcurr + T do
w,x, t ExtractWords(It)
z, Nkwr  RefineTopics(z,w,x, t)

end for
end for
// Global model updates
Synchronize // Retrieve each Nkwr

for each robot r do
Cr1  ComputeCost(�̂kwr, �̂kw1)

⇡⇤
r  Hungarian(Cr1)

end for
Nkw  Nkw +

P
r ⇡

⇤
r(Nkwr �Nkw)

until no new observations
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Results
Experimental Setup

• Seabed image data collected from the Panama Hannibal Seamount [3].

• 4 missions used to simulate two missions with 2 vehicles.

• Compared to naïve model that merges topics by ID (AD-ROST-ID).

• Examined topic similarity vs. communication rate.

Comparison of Topic Exemplars

Figure 4: Comparison of maximum-likelihood topic exemplars from the first two missions. (Top):

Topics learned by AD-ROST-ID. (Bottom): Topics learned using AD-ROST-SIM.

Topic Similarity vs. Communication Rate

Figure 5: Topic distance (as in (3)) vs. number of examples between model synchronization.

Spatiotemporal Topic Models
We focus on unsupervised categorization using Bayesian nonparametric infer-
ence. We use a “bag of words” model, where images are represented by a set of
visual “words”, i.e. image features.

Figure 2: Graphical model of the ROST framework.

We use real-time online spatiotemporal topic modeling (ROST) [1] to learn a set
of image topics. ROST models the probability of word (i.e. image feature) wi,
given its location in the image x and time t as follows:

p(wi | x, t) =
KX

k=1

p(wi | zi = k)p(zi = k | x, t) (4)

We use Gibbs sampling to estimate the posterior probability of a topic assign-
ment for a given visual word. The sampling distribution is computed as follows:

p(zi = k | z�i,w) /

"
n(v)
k,�i + �

n(·)
k,�i + V �

#"
n(Gi)
k + ↵

n(Gi)
�i +K↵

#
, (5)

where n(v)
k,�i is the count of assignments of topic k to every other observation of

word v, n(·)
k,�i is the count of all current assignments of topic k, n(Gi)

k is the count
of all assignments of topic k in spatiotemporal neighborhood Gi, and n(Gi)

�i is the
corresponding total count of topic assignments to all other words in Gi.

Maximum-likelihood estimates for topic-word distributions and topic mixing
proportions respectively can then be computed as follows:

�̂kw =
n(w)
k + �

n(·)
k + V �

, ✓̂Gik =
n(Gi)
k + ↵

n(Gi) +K↵
. (6)

Future Directions: 
• Field trials and demonstration in a coral reef environment.  
• Peer-to-peer distributed scene understanding. 
• Merging scene models with different numbers of scene constructs (CRPs). 
• Use of nested Chinese Restaurant Process for  hierarchical scene understanding. 
• Multi modal scene models using acoustic and optical imagery.

Experiments with simulated missions using real data suggest that  merging scene 
models using the Hungarian algorithm works well even when the merges happen 
infrequently (low bandwidth), compared to trivial approach to merging of the models.

Mission 1 Mission 2

Figure above shows the progression of the scene map generated by the robot as it 
explores an artificially created scene in a test tank for two different sets of 
hyperparameters.

Figure above shows (a) Scatter plot evaluating different scene maps generated by varying 
hyperparameters alpha, beta, gamma, evaluated on Mutual Information Score with RGB 
photomosaic map (c) of the reef, and the size of the compressed map in bytes. (d) 
Scatter plot where the same maps are evaluated by their MI score with the expert 
annotations (f). MI score is only computed for the region of the reef for which there were 
annotations. (b,e) show examples of generated map along with their locations in the 
scatter plots. Variation in the colors of the scene map is purely random, as is only used to 
distinguish a region from other types of regions.

Figure on the left show random samples from the 
generative process describing the spatial distribution 
of scene labels using the spatially correlated CRP. The 
hyper parameters can be used to control the 
patchiness of the scene constructs, without explicitly  
learning a classifier.

Summary: 
• Preliminary results demonstrate the feasibility of a co-robotic visual exploration of an 

unknown environment, even in the presence of strong bandwidth constraints. 
• Use of a Bayesian nonparametric scene model enables in-situ learning of scene 

descriptors that can be used for communication over low bandwidth. 
• Multiple exploring AUVs can learn a coherent scene models by occasionally syncing 

with the topside node.
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y.

( x , y ) ∼ N(( x ′�, y ′�), Σ )
θ t ∼ CRPx , y ( γ , α )
k ∼ Categorical(θ t )

ϕk ∼ Dirichlet ( β )
w ∼ Categorical(ϕk )

Example of a user interface for co-robotic exploration.
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This project is focused on developing new techniques to enable 
interactive exploration in unknown, low bandwidth 
environments, with a multi-robot team. The proposed approach 
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Unsupervised semantic maps 
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underwater exploration
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• The primary hurdle in autonomous deep sea exploration is 
the extremely low bandwidth communication.

• A vast majority of the oceans and the seafloor is unexplored 
and unknown, and hence there is very limited amount of data 
available for targeted autonomous missions.

• The scale of the oceans necessitate exploration using multi-
robot teams. Strict bandwidth limitations mean they must 
coordinate with each other efficiently.

• Informative path planning for robots when observations are 
categorical, such as observations of species or tax types, is 
hard when  number of species is large.
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• The proposed exploration approach generalized to many 
other types of environments beyond the deep sea such as: 
aftermath of a natural disaster, caves and mines, and other 
planets,  where there exist communication bottlenecks.

• The proposed distributed unsupervised scene understanding 
and active reward learning is, to our knowledge, the first to 
enable interactive exploration in communication constrained 
environments.

• The proposed generative model for spatially distributed 
categorical observations is ideally suited for modeling 
complex ecosystem, habitats, and community structures, 
enabling new applications in ecology.
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Impact on Society

• Potential applications to coral reef health 
monitoring in the face of climate change. The 
2020 field trials will collaborate with coral reef 
scientists to study endangered stag horn 
corals

• Cross disciplinary work with marine 
ecologists.

• Use of methods by third party 
researchers/robots (NDSF AUV Sentry)

• Lowering barriers to using co-robotics to 
explore the ocean

Education and Outreach Quantifiable Impact

• 5 refereed conference papers
• 1 journal paper
• Best paper award in service robotics at 

ICRA2020
• Finalist for best paper award at IROS 2018.
• First place prize at MIT Mechanical 

Engineering Research Exhibition 2019.
• 10 students trained (graduate, undergraduate, 

high school)
• Use of methods by third party 

researchers/robots (NDSF AUV Sentry)

tested their model with two adaptive sampling strategies.
Suryan and Tokekar [43] develop a fast GP regression in-
formative path planning algorithm over spatial fields. Berget
et al. [44], Fossum and Eidvsik et al. [45], and Fossum and
Fragoso et al. [10] implement GP regression on AUVs and
demonstrate the viability of simple IPP algorithms in real-
world scenarios. Flaspohler et al. [46] introduce a plume-
finding algorithm, which locates maxima of phenomena
modeled by GPs. In all of these works, GPs model scalar
fields.

III. GAUSSIAN-DIRICHLET RANDOM FIELDS

We begin with several preliminary definitions. A GDRF is
defined on an indexing set X = {x1, x2, . . . }, representing
points in the world on which the model is defined. For
example, a GDRF on a two-dimensional A ⇥ B grid has
as its indexing set X = {1, 2, . . . , A} ⇥ {1, 2, . . . , B}. We
will generally refer to the indexing set itself as the world,
and call members of the world locations.

Words wi and topics zi are W - and K-categorical
variables, respectively. The mean latent log probabilities
(MLLPs) µj are Gaussian random fields defined on the world
X . MLLPs are transformed to a probability distribution via a
link function fj : RK ! [0, 1], where

P
j fj(µ1, . . . , µK) =

1 . For this paper, we exclusively use the softmax link
function fj(µ1, . . . , µK) = exp(µj)/

P
k exp(µk). Finally,

the generative model contains several hyperparameters: � is
the Dirichlet parameter controlling the word distribution for
each topic, and Mi and ⌃i are respectively the mean and
covariance function of the Gaussian process from which µi

are drawn.
Given a set of N (not necessarily unique) members of

the indexing set, {x1, x2, . . . , xN}, latent probabilities for
K topics, as well as topics and words, are given by:

µj ⇠ N (Mi,⌃i) , j 2 [1..K]

�z ⇠ Dirichlet (�) , z 2 {z1, . . . , zK}
zi ⇠ f(µ1(xi), . . . , µK(xi)), i 2 [1..N ]

wi ⇠ �zi , i 2 [1..N ] (9)

The graphical model for GDRFs is given in Fig. 2.

µ z w

M ⌃

��

K N

K

Fig. 2: The graphical model for GDRFs

IV. APPROXIMATE INFERENCE OF GAUSSIAN-DIRICHLET
RANDOM FIELDS

Assume we have collected a set of N categorical obser-
vations {wi} associated with N locations in the world {xi}.

We can decompose the learning of a GDRF into two steps:
learning the word-topic model, and learning the latent log
topic probabilities. We learn the word-topic model via Gibbs
sampling. This model is similar to ROST is many ways,
which is itself a spatiotemporal version of LDA. For ROST,
the probability of drawing topic j in the Gibbs sampling step
is given in (6). The first term represents P (w|z); the second
term represents P (z|x). In ROST, the spatio-temporal world
is discretized into cells, and the prior distribution of topics
in a cell is defined by the distribution of topics in the Von
Neumann neighborhood of the cell. Every word in a cell has
the same prior topic distribution, independent of its exact
location within the cell.

For GDRFs, the Gaussian Processes underlying the model
allow us to consider topic densities, as opposed to counts,
in P (z|x). The term nG(di)

�i,j in (6) represents the number of
times topic j is observed in the neighborhood of cell di.
Normalizing this by the hypervolume of di, we get an ap-
proximation for the mean topic density in the neighborhood
of di:

P (zi = j|x) =
n
G(di)
�i,j

V (G(di)
+ ↵

V (G(di)

n
G(di)
�i,·

V (G(di)
+ K↵

V (G(di)

(10)

Finally, since the Dirichlet concentration parameter ↵ can
also be viewed as a smoothing “pseudocount”, we can factor
it into a scale times the hypervolume of the neighborhood,
↵ ! ↵V (G(di)). Then, in the limit as V (G(di)) approaches
zero, we get our Gibbs sampling distribution for GDRFs:

P (zi = j|z�i,w, xi) /
nwi
�i,j + �

n·
�i,j +W�

⇢j(xi) + ↵

⇢(xi) +K↵
. (11)

We replace the topic counts nG(di)
�i,j in (6) with topic densities

⇢j(x). The term nG(di)
�i,· , which represents the total number of

observations in document di, then becomes the observation
density ⇢(x). In GDRF, ↵ is a pseudo-density, with the same
smoothing properties as the other models.

After sampling a topic for each observation, we have col-
lected a set of N categorical topics {zi}, associated with N
locations in the world {xi}. We can use these to do approxi-
mate variational inference on the Gaussian processes. In our
generative model, we let P (zi|x) = exp(µi)/

P
j exp(µj).

P (zi|x) represents the topic probability at location x. We can
use the new topics from the Gibbs sampling {zi} to calculate
approximate ⇢j(xi) by discretizing the world. Substituting in
the expression from the Gibbs sampling distribution,

⇢j(xi) + ↵

⇢(xi) + T↵
= exp(µj(xi))/

X

k

exp(µk(xi)) (12)

or
log(⇢j(xi) + ↵) = µj(xi) + C. (13)

Because the softmax transformation is shift invariant, we can
take C to be zero. Our training inputs are the locations of the
observations {xi}, while our training targets for each Gaus-
sian process are {log(⇢j(xi) + ↵)}. We aim to maximize the
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value. Theoretically, PLUMES can be shown to select asymp-
totically optimal actions. We briefly describe how analysis in
Auger et al. [17] for PUCT-MCTS with progressive widening
in MDPs can be extended to PLUMES.

Using standard methods [23], we can reduce the MSS
POMDP to an equivalent belief-state MDP. This belief-state
MDP has a state space equal to the set of all possible beliefs,
and a transition distribution that captures the effect of both
the dynamics and the observation model after each action.
Planning in this representation is often intractable as the
state space is continuous and infinite-dimensional. However,
PLUMES plans directly in the belief-state MDP by using its
GP belief state to compute the transition function efficiently.

Subsequently, Theorem 1 in Auger et al. [17] shows that for
an MDP with a continuous state space, like the belief-state
MDP representation suggested, the value function estimated
by continuous-observation MCTS asymptotically converges to
that of the optimal policy:

���Q̂⇤
h(bt, a)�Q⇤

h(bt, a)
��� 

C

N(bt, a)�d
, (6)

with high probability [17], for constants C > 0 and �d⇤.
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The belief-dependent MVI heuristic reward R̃(bt,x) quan-
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sample at location x 2 X. MVI reward quantifies the mutual
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Each entropy expression H[·] can be respectively approxi-
mated as the entropy of a Gaussian random variable with mean
and variance given by the GP equations (Eq. 3 & 4), and the
entropy of a truncated Gaussian, with upper limit z⇤i and the
same mean and variance.

To draw samples z⇤i from the posterior p(Z⇤ | bt), we
employ spectral sampling [25]. Spectral sampling draws a
function f̂ , which has analytic form and is differentiable,
from the posterior belief of a GP with stationary covariance
function [22], [26]. To complete the evaluation of Eq. 10,
z⇤i ⇠ p(Z⇤ | bt) can be computed by applying standard
efficient global optimization techniques (e.g., sequential least

Fig. 3. Convergence of MVI vs UCB heuristic: The true environmental phenomenon with the global maximum marked by a star is shown in the center;
high regions are colored yellow and low regions blue. In (A,C), the robot trajectory and corresponding reward functions are shown early (20 actions) and later
(140 actions) in a mission. On the top row, snapshots of the robot belief state with planned trajectories are shown, with recent actions colored pink and earlier
actions colored blue. Red stars mark maxima sampled by MVI. In the bottom row, the corresponding reward function is shown, with high-reward regions
colored yellow and low reward regions colored purple. By the end of the mission, MVI clearly converges to placing reward only at the global maximum,
which in turn leads to efficient convergence of the robot. By contrast, the reward landscape resulting from canonically used UCB converges to the underlying
function, causing the UCB planner to uniformly tour high-valued regions of the environment.
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Figure 6: Message passing in the proposed centralized and decentralized distributed scene understanding
techniques. Here ri are the robots, rtop is the surface node, Φ is the scene model, describing the appearance
of each learned scene type, Θ is the scene map describing the distribution of scene types at each location,
and Φ∼,Θ∼ are bandwidth dependent approximations.

casts an approximation to them to all the robots, and receives deltas to the scene model from
the exploring robots as point-to-point messages (Fig. 6(a)). These deltas are then applied to
the global model. Newman et al. [48] proposed a similar approach to learn topic models using
multiple processors on a computer, but without the use of approximate messages. Proposed
research will analyze the effect of approximating the topic model update messages on the model
convergence.

3. Decentralized scene model : In decentralized mode, each robot runs its own scene model,
which is synchronized with other robots via regular broadcasts of a bandwidth dependent
approximation to its scene model (Fig. 6(b)). When a node receives a broad-casted message,
it is merged into the current topic model by either mapping the topics to existing topics,
or creating new ones. The proposed research will evaluate various approaches for merging
the scene models. The greedy topic matching strategy proposed by Newman et al. [48] is
not appropriate for this situation because it will result in double counting. Instead, we will
examine other approaches for merging matching topics such as taking the mean distribution,
or simply choosing the topic with more observations.

These topic modeling approaches can be evaluated by computing the mutual information [11]
of topics labels with annotations provided by experts, and also by computing the model perplexity.

4.4 Communication Channel Modeling

Communication is an essential component of field robotics. The underwater domain, however,
presents unique challenges — specifically that the strong attenuation of radio signals prevents the
use of radio-based wireless communication typically used in land and aerial robotics. Underwater
acoustics is the most viable wireless communication method for most networks of underwater ve-
hicles, due to typical spatial node separations being much larger than an underwater optical link
can support (less than 150m due to strong scattering of light in water), and due to the energy
and time costs for a deep autonomous underwater vehicle (AUV) to surface to use a radio link.
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Motivation: 
This project aims to develop an approach to co-robotic exploration of unknown 
environments with a team of robots, to aid in the discovery and mapping of scientific 
phenomena, in extreme environments such as the deep sea where autonomous robots 
operate under strong communication bottlenecks. The proposed robotic approach aims 
to use a Bayesian nonparametric scene model to learn high level scene descriptors, 
which can then be used to for efficient robot-robot and human-robot communications. 

ARPLab
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Scene Model: 
The generative model for the observed data 
is described as following. At time t,  we 
observe a discrete observation w at a noisy 
location (x, y), modeled as a random sample 
from a Gaussian centered around the true 
position (x', y'). We model the distribution of 
scene labels with a spatially correlated 
Chinese Restaurant Process (CRP), and the 
distribution of visual features describing each 
scene label with a Dirichlet distribution.

Robot System: 
The proposed co-robotic exploration system consists of an autonomous surface vehicle 
responsible for localizing the AUVs and acting as the communication relay; and one or 
more AUVs equipped with a multitude of sensors and on-board processing power to 
enable in-situ scene understanding. As shown in the figure below, (left) the AUV is 
equipped with bandwidth heavy sensors such as stereo cameras and side scan sonars, 
in addition to, an echosounder (altitude sensing), acoustic modem, and three computers, 
two of which have GPUs for computing scene maps in realtime. The topside vehicle 
(middle) has radios for communicating with the scientists, and a USBL array for acoustic 
communications and robot localization. Both the AUV and the ASV working together 
(right) enable the operation of the system even when the the AUV is outside the acoustic 
comms range of the topside operator.
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Fig. 4. Examples of randomly generated scenes by the proposed spatially correlated Chinese Restaurant Process. The hyperparameters � and ↵ can be
used to tune the generative model for scene with varying complexity in terms of number of different labels and patches.

that is used as an air-to-sea communication and localization
system to link the scientist to the robots; 2) an AUV
equipped with acoustic and optical imaging capabilities, and
sufficient computing power to generate concise scene maps
from complex high dimensional sensor data streams; 3)
Robot Operating system (ROS) based software architecture
to enable a compute graph that spans multiple computers,
and optionally multiple robots when operating in tethered
mode.

A. Surface Vehicle

The autonomous surface vehicle (ASV) is primarily re-
sponsible for acting as a communication and localization
relay for the AUV. It is equipped with an Ultra Short
Baseline (USBL) acoustic positioning and communication
system (shown in Fig. 5 bottom-right) to communicate
with the underwater robot, and a high speed RF radio to
communicate with the scientist on-board the ship or on land.
The surface vehicle estimates its distance to the AUV, and
fuses a GPS location with the USBL estimate to provide
global localization information to the AUV. Furthermore,
the surface vehicle is capable of autonomously following

the underwater robot to stay directly above it, maximizing
bandwidth and localization accuracy. Peak throughput of the
acoustic communication system is about 10kbit/sec over 1km
range, using the 18-34KHz band.

B. Underwater Vehicle
The underwater vehicle (Fig. 5,1) is based on the

BlueROV2 platform, with the addition of stereo cameras
and side scan sonars for high resolution optical and acous-
tic imaging, an echosounder for altitude measurement, an
acoustic modem/USBL transponder, and two Jetson TX2
computers for on-board processing of sensor data stream. For
in-tank localization and testing, AprilTags [33] are employed.
BlueROV2 has open source hardware and software, and
is low cost, which makes it suitable for scaling the robot
system to multiple robots, and for easily adding new sensing
capabilities.

C. Software Architecture
The unsupervised approach to exploration relies upon on-

line robot-side scene modelling to construct a low-bandwidth
representation of its surroundings. This representation takes
the form of a time-varying scene map constructed from
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learned models for tasks such as autonomous exploration,
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The main difficulty of this extension lies in achieving and
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learned locally by each robot. This is especially challenging

for multi-robot teams operating in communication-constrained

environments, such as marine robots.

We present a novel approach for multi-robot distributed

learning in which each robot maintains a local topic model to

categorize its observations and model parameters are shared to

achieve global consensus. We apply a combinatorial optimiza-

tion procedure that combines local robot topic distributions

into a globally consistent model based on topic similarity,

which we find mitigates topic drift when compared to a

baseline approach that matches topics naı̈vely. We evaluate

our methods experimentally by demonstrating multi-robot un-

derwater terrain characterization using simulated missions on

real seabed imagery. Our proposed method achieves similar

model quality under bandwidth-constraints to that achieved by

models that continuously communicate, despite requiring less

than one percent of the data transmission needed for continuous

communication.

I. INTRODUCTION

Unsupervised machine learning techniques can enable
adaptive robotic systems that are robust to unexpected
changes in their environment. Furthermore, the operation
of robots in environments like the deep benthic sea, where
they may encounter species and terrains not previously
documented, demands the flexibility to novel observations
afforded by unsupervised learning. A team of underwater
robots capable of unsupervised scene categorization would
enable more efficient ocean surveying and exploration. How-
ever, because unsupervised learning methods do not have a

priori defined labels, combining the local models discov-
ered by individual robots into a globally cohesive model
is a hard combinatorial optimization problem. Achieving
a globally cohesive scene model is critical for both post-
mission analysis and so that multi-robot teams can make
better global planning and exploration decisions in real-time.
This paper presents a novel approach to multi-robot learning
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Fig. 1: Illustration of the multi-robot terrain charac-

terization problem. Each individual AUV builds its own
local topic model. Model parameters from all vehicles are
transmitted top-side via acoustic modem, where the models
must be combined into a consistent global model. However,
there is no guarantee that the individual robots will agree
on which visual category corresponds to each topic ID. This
correspondence issue must be addressed to achieve global
consensus.

that obtains a globally consistent scene categorization under
communication constraints, endowing a team of exploratory
robots with the ability to reach consensus in their semantic
description of the world.

In this work, we consider the problem of underwater ter-
rain characterization. Formally, given a sequence of images,
we would like to predict for each image the distribution over
a set of latent categories that generated the data. Previous
approaches to this problem for single robots [1] make use of
spatiotemporal variants of topic models like latent Dirichlet
allocation (LDA) [2] and the nonparametric hierarchical
Dirichlet process (HDP) [3]. The extension of these methods
to the multi-robot setting presents several challenges. We aim
to have every robot build a model that discovers thematic
structure within an image stream that coincides well with
human semantics, but also for each robot’s model to be
consistent with the other robots in a multi-robot exploration

Distributed Scene Understanding 
Problem: 
When multiple AUVs are exploring an environment, each 
individual robot builds its own local scene model. When IDs of 
these scene constructs (topics) are shared between robots 
and the topside operator, there there is no guarantee that the 
same IDs from different robots correspond to the same visual 
category.  
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Fig. 1: Illustration of the multi-robot terrain charac-

terization problem. Each individual AUV builds its own
local topic model. Model parameters from all vehicles are
transmitted top-side via acoustic modem, where the models
must be combined into a consistent global model. However,
there is no guarantee that the individual robots will agree
on which visual category corresponds to each topic ID. This
correspondence issue must be addressed to achieve global
consensus.

that obtains a globally consistent scene categorization under
communication constraints, endowing a team of exploratory
robots with the ability to reach consensus in their semantic
description of the world.

In this work, we consider the problem of underwater ter-
rain characterization. Formally, given a sequence of images,
we would like to predict for each image the distribution over
a set of latent categories that generated the data. Previous
approaches to this problem for single robots [1] make use of
spatiotemporal variants of topic models like latent Dirichlet
allocation (LDA) [2] and the nonparametric hierarchical
Dirichlet process (HDP) [3]. The extension of these methods
to the multi-robot setting presents several challenges. We aim
to have every robot build a model that discovers thematic
structure within an image stream that coincides well with
human semantics, but also for each robot’s model to be
consistent with the other robots in a multi-robot exploration
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The proposed approach merges the scene model at the 
topside central node using the Hungarian algorithm, at a rate 
permitted by the available bandwidth, and then the 
broadcasts the merged model back to every robot. 

Tank Trials: 
We demonstrated the scene modeling approach in a controlled tank environment with an 
artificially constructed scene consisting of seaweed, stones, sand, grass, and a crab; 
and attempted to build a global scene map from the streamed data. The robot was 
localized using AprilTags and an external camera, mimicking the position information 
provided by the surface vehicle via GPS and USBL. The AUV was then instructed to 
follow a lawn-mower pattern in the tank. The downward facing stereo camera provided 
an RGB-labelled point cloud which were then streamed into the scene modeling system. 
Old data points are updated with new topic information even as new data points are 
processed using an online Gibbs sampler.

Simulated Coral Reef Exploration: 
We evaluated the ability of the proposed scene modeling approach to characterize a 
coral reef environment, given the bandwidth constraints. We used the HAW-2016-48 
dataset from the Scripps 100 Island Challenge project to simulate observations.

References: 
1. Doherty, K., Flaspohler, G., Roy, N. & Girdhar, Y. Approximate Distributed 

Spatiotemporal Topic Models for Multi-Robot Terrain Characterization. in Intelligent 
Robots and Systems (IROS) (2018). 

2. [SUBMITTED] Girdhar, Y. et al. Enabling Co-Robotic Scientific Exploration of 
Unknown Environments over a Low Bandwidth Communication Channel. in IEEE 
International Conference on Robotics and Automation (2019).

Approximate Distributed Spatiotemporal Topic Models for Multi-Robot Terrain Characterization
Kevin Doherty1,2, Genevieve Flaspohler1,2, Nicholas Roy1, and Yogesh Girdhar2

1Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology (MIT)
2Deep Submergence Laboratory, Woods Hole Oceanographic Institution (WHOI)

Problem
We aim to develop teams of under-

sea exploration robots capable of cate-
gorizing seabed terrains. This is chal-
lenging due to:

• Unsupervised models like topic
models lack definitive “corre-
spondence” between categories

• Communication-constraints
underwater prevent high-
bandwidth solutions (e.g. trans-
mission of raw images)

We seek improved consistency be-
tween local topic models with limited
data transmission.

Figure 1: Two AUV’s must merge local topic
models via a central node (ship).

Finding Topic Correspondence
We leverage the per-topic word distribution given by �̂kw learned by each

vehicle as a descriptor of the topic. We then posit a heuristic distance between
these descriptors, given by:

D(�̂kw, �̂
0
kw) =

KX

k=1

k�̂kw � �̂0
kwk

2. (1)

Finally, we pose topic matching as a combinatorial optimization problem
where we seek to minimize the cost given by the total distance between top-
ics in (1). That is, the optimal topic permutation for robot r with respect to robot
1 is given as follows:

⇡⇤
r = argmin

⇡(�̂kwr)

f(⇡(�̂kwr)) (2)

f(⇡(�̂kwr)) =

KX

k=1

k⇡(�̂kwr)� �̂kw1k
2. (3)

In practice, we solve the optimization in (3) using the Hungarian algorithm
[2], which provides a solution for each vehicle in O(K3

), giving an overall algo-
rithm complexity for our algorithm of O(RK3

).

AUV 1 Topics

AUV 2 Topics

�̂1,1 �̂2,1 �̂3,1 �̂4,1

�̂1,2 �̂2,2 �̂3,2 �̂4,2

D(�̂1,1, �̂1,2)

Figure 3: Optimization in (3) visualized as a bipartite graph matching problem, solvable via the
Hungarian algorithm [2].

The complete algorithm is summarized below, where RefineTopics refers to the
Gibbs sampling procedure given in (5).

Algorithm AD-ROST-SIM
repeat

// Local model updates
for each robot r in parallel do

// Receive global counts Nkw

Nkwr  Nkw

for t from tcurr to tcurr + T do
w,x, t ExtractWords(It)
z, Nkwr  RefineTopics(z,w,x, t)

end for
end for
// Global model updates
Synchronize // Retrieve each Nkwr

for each robot r do
Cr1  ComputeCost(�̂kwr, �̂kw1)

⇡⇤
r  Hungarian(Cr1)

end for
Nkw  Nkw +

P
r ⇡

⇤
r(Nkwr �Nkw)

until no new observations
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Results
Experimental Setup

• Seabed image data collected from the Panama Hannibal Seamount [3].

• 4 missions used to simulate two missions with 2 vehicles.

• Compared to naïve model that merges topics by ID (AD-ROST-ID).

• Examined topic similarity vs. communication rate.

Comparison of Topic Exemplars

Figure 4: Comparison of maximum-likelihood topic exemplars from the first two missions. (Top):

Topics learned by AD-ROST-ID. (Bottom): Topics learned using AD-ROST-SIM.

Topic Similarity vs. Communication Rate

Figure 5: Topic distance (as in (3)) vs. number of examples between model synchronization.

Spatiotemporal Topic Models
We focus on unsupervised categorization using Bayesian nonparametric infer-
ence. We use a “bag of words” model, where images are represented by a set of
visual “words”, i.e. image features.

Figure 2: Graphical model of the ROST framework.

We use real-time online spatiotemporal topic modeling (ROST) [1] to learn a set
of image topics. ROST models the probability of word (i.e. image feature) wi,
given its location in the image x and time t as follows:

p(wi | x, t) =
KX

k=1

p(wi | zi = k)p(zi = k | x, t) (4)

We use Gibbs sampling to estimate the posterior probability of a topic assign-
ment for a given visual word. The sampling distribution is computed as follows:

p(zi = k | z�i,w) /

"
n(v)
k,�i + �

n(·)
k,�i + V �

#"
n(Gi)
k + ↵

n(Gi)
�i +K↵

#
, (5)

where n(v)
k,�i is the count of assignments of topic k to every other observation of

word v, n(·)
k,�i is the count of all current assignments of topic k, n(Gi)

k is the count
of all assignments of topic k in spatiotemporal neighborhood Gi, and n(Gi)

�i is the
corresponding total count of topic assignments to all other words in Gi.

Maximum-likelihood estimates for topic-word distributions and topic mixing
proportions respectively can then be computed as follows:

�̂kw =
n(w)
k + �

n(·)
k + V �

, ✓̂Gik =
n(Gi)
k + ↵

n(Gi) +K↵
. (6)

Future Directions: 
• Field trials and demonstration in a coral reef environment.  
• Peer-to-peer distributed scene understanding. 
• Merging scene models with different numbers of scene constructs (CRPs). 
• Use of nested Chinese Restaurant Process for  hierarchical scene understanding. 
• Multi modal scene models using acoustic and optical imagery.

Experiments with simulated missions using real data suggest that  merging scene 
models using the Hungarian algorithm works well even when the merges happen 
infrequently (low bandwidth), compared to trivial approach to merging of the models.

Mission 1 Mission 2

Figure above shows the progression of the scene map generated by the robot as it 
explores an artificially created scene in a test tank for two different sets of 
hyperparameters.

Figure above shows (a) Scatter plot evaluating different scene maps generated by varying 
hyperparameters alpha, beta, gamma, evaluated on Mutual Information Score with RGB 
photomosaic map (c) of the reef, and the size of the compressed map in bytes. (d) 
Scatter plot where the same maps are evaluated by their MI score with the expert 
annotations (f). MI score is only computed for the region of the reef for which there were 
annotations. (b,e) show examples of generated map along with their locations in the 
scatter plots. Variation in the colors of the scene map is purely random, as is only used to 
distinguish a region from other types of regions.

Figure on the left show random samples from the 
generative process describing the spatial distribution 
of scene labels using the spatially correlated CRP. The 
hyper parameters can be used to control the 
patchiness of the scene constructs, without explicitly  
learning a classifier.

Summary: 
• Preliminary results demonstrate the feasibility of a co-robotic visual exploration of an 

unknown environment, even in the presence of strong bandwidth constraints. 
• Use of a Bayesian nonparametric scene model enables in-situ learning of scene 

descriptors that can be used for communication over low bandwidth. 
• Multiple exploring AUVs can learn a coherent scene models by occasionally syncing 

with the topside node.
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Example of a user interface for co-robotic exploration.
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enables new types of 
data collection 
missions that can 
target spatiotemporally 
sparse, and previously 
unknown phenomena, 
in extreme 
environments like the 
deep sea.

WARPAUV

SlickLizard ASV

BlueROV

• Motivating STEM education in 
high school students through a 
summer volunteering in the lab.

• Training graduate students
• Robotics field trials with 

students
• Development of WARPAUV as 

an open research platform for 
vision guided AUVs

Multi-Robot Distributed Semantic Mapping in Unfamiliar Environments

through Online Matching of Learned Representations

Stewart Jamieson1,2, Kaveh Fathian2, Kasra Khosoussi2, Jonathan P. How2, Yogesh Girdhar3

Abstract— We present a solution to multi-robot distributed

semantic mapping of novel and unfamiliar environments. Most

state-of-the-art semantic mapping systems are based on super-

vised learning algorithms that cannot classify novel observations

online. While unsupervised learning algorithms can invent la-

bels for novel observations, approaches to detect when multiple

robots in a distributed system have each developed a label

for the same new class are prone to erroneous or inconsistent

matches. These issues worsen as the number of robots in the

system increases and prevent fusing the local maps produced

by each robot into a consistent global map, which is crucial

for cooperative planning and joint mission summarization.

Our proposed solution overcomes these obstacles by having

each robot learn an unsupervised semantic scene model online

and use a multiway matching algorithm to identify consistent

sets of matches between learned semantic labels belonging to

different robots. Compared to the state of the art, the proposed

solution produces 20-60% higher quality global maps that do

not degrade even as many more local maps are fused.

OPEN SOURCE SOFTWARE

An implementation of this solution is contributed in the
“Sunshine” 3D semantic mapping ROS package, a general
purpose single- and multi-robot semantic mapping system:
https://gitlab.com/warplab/ros/sunshine.

I. INTRODUCTION

Semantic mapping is a relatively young field that was
initially motivated by giving robots a spatial awareness
of nearby terrains, objects, and activities [1]. Semantic
maps describe the world using a set of classes, and have
been used with great effectiveness in solving many field
robotics problems such as mission summarization [2], object-
based SLAM [3]–[5], and context-aware planning [6], [7].
Great progress has been made in improving the accuracy
of semantic mapping systems by leveraging deep learning
models trained on large datasets [8]–[12]. However, most
of these systems do not support a priori unknown classes,
which are an essential part of scientific exploration. For
example, in an underwater exploration scenario an explicit
goal is novelty detection, e.g., discovering new species or
geological phenomena. This complication makes it crucial
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Fig. 1. When robots develop different individual semantic models Zi, they
must solve the correspondences ⇧i into some common semantic language
in order to fuse their results. Images from test environment #2 (see Fig. 3).

to find algorithms that use unsupervised learning to develop
new semantic representations online, so that the semantic
mapping system can detect and classify novel observations.

Another important aspect of scientific exploration is that
the task often involves large and unknown environments,
which can be very time consuming to cover with a single
robot. Furthermore, many large-scale phenomena of scientific
interest, such as mass migrations, feeding events, and geo-
logical activities like volcanism, are transient and dynamic

and can thus be easily missed or insufficiently covered by a
single robot. These issues necessitate using a team of robots
working in parallel for distributed mapping and exploration.

When learning semantic representations online using un-
supervised algorithms, the learned models are egocentric.
Figure 1 demonstrates this can be an issue: one robot has
learned a different permutation of the same semantic labels
(represented with colors) learned by the other robot. In
addition to the unknown permutation between corresponding
labels, some labels learned by one robot may not correspond
to any label observed by another robot, or a single label may
represent the union of multiple labels learned by another
robot. Therefore, multi-robot distributed semantic mapping
with learned representations requires correctly estimating the
total number of distinct labels, and associating and fusing
labels that correspond to the same semantic categories.

This work presents a novel system for multi-robot dis-
tributed semantic mapping that addresses the previously

1


