Co-Robotic Systems for GeoSciences Field Research

Feifei Qian', Cristina Wilson?, Sonia Roberts!, Dylan Lee’, Kieran Dunne’, Douglas Jerolmack?, Thomas Shipley?, and Daniel Koditschek'

o TN "University of Pennsylvania, Electrical and Systems Engineering *Temple University, Department of Psycholo
@@ o y y y g g p y, DEP y gy
SINE MORTBUS ‘University of Pennsylvania, Earth and Environmental Science

Summary

The goal of this project 1s to integrate environmental science, robotics, and cognitive science to enable heterogeneous teams of autonomous robots to flexibly support the daily agenda of teams of geoscien-
tists 1n their field experiments. Environmental sciences concerning desertification and sediment loss present urgent social value. Due to the high spatial and temporal variability of the driving and resistance
forces during sediment transport, novel high-resolution and event-driven data sets are requried to enhance existing and new empirical and theoretical models of such dynamic process. Legged robots have
demonstrated great potential of using legs as embodied sensors to provide such novel datasets, while the imperative for useful, autonomous mobile manipulation 1n unstructured, broken and unstable natu-
ral terrains drives fundamental advances in the theory and practice of robotics. In the meantime, growing insight from cognitive science concerning human spatiotemporal reasoning urges its engagement 1n
a new frontier of real-time, perceptually mediated decisions epitomized by scientifically motivated outdoor field research on the motion of waters, winds and sands.
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| __ We develop novel geoscientific instru- Locomotion challenges We explore the human decision-making process during field data collection,

and seek to employ such knowledge to improve the effectiveness of our collab-
orative robots and inform best practices in geoscience field research.
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