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Algorithmic issues rising from the logistic automation domain possess unique features that distinguish them from well-studied problems. On 
one hand, classical pickup and delivery problems (PDP) do not model the non-trivial geometry of physical robots and the possible collisions 
among multiple robots sharing a limited workspace. On the other, multi-robot path and motion planning research has yet to systematically 
address the coordination of hundreds to thousands of robots for the continuous execution of dynamic and stochastic tasks. The proposed 
study intends to fill this gap through the modeling and subsequent algorithmic resolution of the problem, which we call the dynamic multi-
robot dispatching problem (DMD). Depending on the specific application domain, DMD may be subdivided into unlabeled (e.g., container 
unloading from ships) and labeled (e.g., order fulfillment) variants, providing rich grounds for structural exploration. Despite the fact that 
optimal multi-robot coordination is a computationally intractable problem, preliminary efforts indicate that approximately optimal solutions 
could be computed in polynomial time, through the careful integration of the state-of-the-art multi-robot motion planners and the global 
coordination of robot flows. Following this route, the proposed research will develop algorithmic solutions for DMD with provable 
availability and optimality guarantees under stringent safety assurances for human co-workers. Working with collaborators, the research will 
also seek to maximize its applicability to industrial setups. 

A dynamic multi-robot dispatching problem in which tasks arrive continuously in an unpredictable manner. 

The Dynamic Multi-robot Dispatching Problem 

The dynamic multi-robot dispatching (DMD) problem has two variants: unlabeled dynamic multi-robot dispatching problem (UDMD) and 
labeled dynamic multi-robot dispatching problem (LDMD).

A UDMD problem is described by a 4-tuple (𝐺, 𝐷, 𝑋𝐼 , 𝑆) in which 𝐺 is a the graph modeling the workspace of the robots. 𝐷 describes the 
arrival process of the tasks for the robots. 𝑋𝐼 is the set of vertices of 𝐺 where the robots initially reside. 𝑆 is the set of graph vertices 
modeling the task locations (e.g., a shelf that a mobile robot needs to retrieve) for the robots. A UDMD problem has only one type of 
robots: robots that are indistinguishable. UDMD can be proven to be computationally “easy” in that it admits many opportunities for 
efficient optimization due to the robots being unlabeled (see top figure on the right for the intuition). 

An LDMD problem may be defined similarly as UDMD with the key difference that the robots are labeled, meaning that the robots are not 
interchangeable. This happens as each robot must go to a specific location, e.g., when a robot is delivering a specific load to a specific target 
location. LDMD is a much harder problem than LDMD. 

Together, UDMD and LDMD combine to yield many variations of full DMD problems. For example, in the container port example, we 
essentially have a UDMD-LDMD problem where one corresponds to unloading of containers from the ship and the other loading containers 
onto trucks. In attacking the various DMD formulations, we are interested in both practical solutions and provable guarantees. In particular, 
we would like to deliver efficient algorithms for solving the multiple DMD 
formulations that ensure the resulting system to have guaranteed availability, 
i.e., guaranteeing that the system can handle certain load conditions. At the same 
time, the algorithm must be adaptive and safe, i.e., it should have sufficient 
“buffer” to absorb unexpected system breakdowns which require human 
intervention (see figure on the right). Lastly, we will also push the optimality of 
the system with guaranteed availability and safety.  

Research Plan and Result Highlights

The process will be executed in three phase spanning the three years of the project life-span. 

 Year one (09/2017-08/2018): Focusing on the optimality aspect of the static multi-robot systems applicable toward logistics applications 
 Year two (09/2018-08/2019): Introducing dynamics into the multi-robot collaboration problem and studying the availability perspective
 Year three (09/2019-08/2020): Integrating availability, safety, and optimality guarantees into a full and complete algorithmic solution 

During the past year (first year of the project), significant progress has been made on optimally (and efficiently) solving static cases of multi-
robot collaboration for logistic setups. These progress has resulted in the following publications:

 R. Chinta, S. D. Han, and J. Yu. Coordinating the Motion of Labeled Discs with Optimality Guarantees under Extreme Density. WAFR 2018

 J. Yu. Constant Factor Time Optimal Multi-Robot Routing on High-Dimensional Grids. RSS 2018.

 S. D. Han, N. M. Stiffler, A. Krontiris, K. E. Bekris, and J. Yu. Complexity Results and Fast Methods for Optimal Tabletop Rearrangement 
with Overhand Grasps. IJRR 2018.

 S. D. Han, E. J. Rodriguez, and J. Yu. SEAR: A Polynomial-Time Multi-Robot Path Planning Algorithm with Expected Constant-Factor 
Optimality Guarantee. IROS 2018.

 S. D. Han, N. M. Stiffler, K. E. Bekris, and J. Yu. Efficient, High-Quality Stack Rearrangement. RA-L 2018.

 J. Yu. Expected constant-factor optimal multi-robot path planning in well-connected environments. MRS 2017.

We highlight on the right a recent breakthrough of ours regarding the optimality-efficiency barrier of multi-robot coordination, appeared in 
this year’s Robotics: Science and Systems conference (2nd paper in the list above). 

Main Results

Multi-Robot Routing in High Dimensions

A multi-robot routing problem is specified by a 3-tuple 
(𝐺, 𝑋𝐼 , 𝑋𝐺) in which

• 𝐺 = (𝑉, 𝐸) is an 𝑛-vertex connected graph. 
• 𝑋𝐼 = 〈𝑋𝐼(1), … , 𝑋𝐼(𝑛)〉, as a function 𝑋𝐼: 𝑁 → 𝑉, is the 

initial configuration of the 𝑛 robots
• 𝑋𝐺 = 〈𝑋𝐺(1), … , 𝑋𝐺(𝑛)〉, also a function 𝑋𝐺: 𝑁 → 𝑉, is the 

goal configuration of the 𝑛 robots. 

In our case, 𝐺 is a 𝑘 dimensional grid with  𝑛 = 𝑚1 ×⋯×𝑚𝑘, 
in which 𝑚𝑖 , 1 ≤ 𝑖 ≤ 𝑘 is the length or size of  a dimension 𝑖. In 
the above example, we have 𝑘 = 2,𝑚1 = 7,𝑚2 = 4, 𝑛 = 𝑚1 ×
𝑚2 = 28. 

Given the problem setup, which implies maximum robot 
density, the only allowed moves are synchronous rotations of 
robots along disjoint cycles on 𝐺. E.g., the following figure 
shows ten robots rotate along two disjoint cycles which can be 
completed in a single (time) step, or makespan. 
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Two synchronous rotations that take 1 (time) step

Given an instance 𝑝 = (𝐺, 𝑋𝐼 , 𝑋𝐺), define its distance gap 
𝑑𝑔(𝑝) as

𝑑𝑔 = max
1≤𝑖≤𝑛

𝑑𝑖𝑠𝑡(𝑋𝐼 𝑖 , 𝑋𝐺 𝑖 )

e.g., for the example problem above (repeated here), we may 
compute the individual 𝑑𝑖𝑠𝑡(𝑋𝐼 𝑖 , 𝑋𝐺 𝑖 ) and then 𝑑𝑔 as:

The max distance of 8 is achieve by robot 𝑖 = 7, among others. 

Main contribution: a PartitionandFlow (PaF) algorithm that

• Computes an 𝑂(𝑑𝑔(𝑝)) makespan time-optimal plan, 

• Runs in 𝑂 𝑉 2 , i.e., quadratic time in the worst case, and
• Works for arbitrary fixed dimension 𝑘 and supports 

maximum robot density. 

More formally, 

That is, the PaF algorithm computes a constant-factor time-
optimal solution in low polynomial time for an arbitrary 
instance of the multi-robot routing problem on 𝑘-dimensional 
grids. For large 𝑘 and when 𝐺 is not degenerate, PaF runs in 
strictly sub-quadratic time. Moreover, when 𝑚1, … ,𝑚𝑘 are of 
similar magnitudes, the running time of PaF is almost linear, 
i.e., approaching 𝑂 𝑉 .

Theorem (PartitionandFlow in 𝒌 Dimensions). Let 𝐺 =
𝑉, 𝐸 be an 𝑚1 ×⋯×𝑚𝑘 grid with 𝑚1 ≥ ⋯ ≥ 𝑚𝑘 ≥ 2 and
𝑚𝑘−1 ≥ 3. Let 𝑝 be an arbitrary instance of the multi-robot
routing problem on 𝐺. Then, PaF computes a solution path set

with 𝑂(𝑑𝑔 𝑝 ) makespan in 𝑂 𝑑𝑔
𝑘 𝑝 𝑉 and also 𝑂( 𝑉 2)

running time.

𝑑𝑖𝑠𝑡 𝑋𝐼 1 , 𝑋𝐺 1 = 6, 𝑑𝑖𝑠𝑡 𝑋𝐼 2 , 𝑋𝐺 2 = 1, … , and 

𝑑𝑔 𝑝 = max
1≤𝑖≤28

𝑑𝑖𝑠𝑡 𝑋𝐼 𝑖 , 𝑋𝐺 𝑖 = 8.
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