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Technical Accomplishments
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The CU Robust Autonomous Aerial Vehicle - Endurant and
Nimble (RAAVEN) UAS were designed at the University of
Colorado for nomadic, mobile field deployment.
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Broader Impact

N TARGETED OBSERVATION BY RADARS AND UAS OF SUPERCELLS
NOAA National Severe Storms Laboratory
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Left: One hour chonces for strong low-level rofation (tornat in 0 thunders jota in 0
combination (*ensemble”) of forecost models. Right: One hour chanes for strong low-leve roation using MPAR 1-minute dato
in on ensemble of forecast models. The inset plots show in predi ble I dit: NOAA NSSL
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Collaborations with the National Severe Storms Lab (NSSL), the National
Oceanic and Atmospheric Administration (NOAA), and other meteorologists
and atmospheric scientists insure dissemination to stakeholder communities
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