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4.2 Testbeds

Location Crop Area
Firebaugh Grapes 77
Merced Almonds 156
Riverside Citrus 450
Coachella Avocados 540

Table 1: Details about the four
testbeds. Area is expressed in acres.

In addition to simulation models and lab tests, the proposed
system will be deployed and evaluated in various testbeds
where di↵erent specialty crops are grown. Specifically, we
have identified four testbeds to evaluate system performance.
These testbeds include (1) an experimental vineyard man-
aged by E&J Gallo Winery (see letter of collaboration) lo-
cated in Firebaugh (Fresno county, CA), and (2) almond or-
chard located in Merced County (see letter of collaboration
from Almond Board of California). In Riverside County, in
consultation with the Western Growers association, tests will be performed in the Agricultural Op-
erations (Ag Ops) facilities managed by UC Riverside where (3) citrus and (4) avocados are grown.
These testbeds are geographically distributed and used to grow di↵erent crops, thus allowing to
operate the proposed solution under heterogeneous conditions. Table 1 provides additional details.

4.3 Experiments
Two types of experiments will be performed during the four year project. The first set of experi-
ments aims at perfecting the accuracy of the robotized pressure chamber we will develop. To this
end, measurements obtained with the robotized pressure chamber will be cross-validated with LWP
measurements obtained with a manually operated portable pressure chamber. These initial experi-
ments will ensure adequate data accuracy before we perform the data analysis process described in
the next subsection. We anticipate these experiments to take place in the first and second year of
the project. Once the robotized pressure chamber has been perfected, data collection experiments
will involve the entire system. We note that UAVs and ground robots do not need to operate at
the same time, but it is instead foreseeable that imagery collected by the UAV will be processed
o↵-line. This is an acceptable approach because the underlying physical phenomena are slow vary-
ing. Ground robots will then collect data from both the pressure chamber and the soil probe and
store them as entries with spatio-temporal references for the subsequent data analysis.

4.4 Data Analysis

Generalized Spatial Analysis Method. Spatial analysis is often constructed as a statistical
model that is the sum of a deterministic trend m(u) and a random autocorrelated but stationary
residual component "(u):

Z(u) = m(u) + "(u).

Assuming that the samples are representative, non-preferential and consistent, values of the target
variable at some new location s0 can be derived using a spatial prediction model for a feature of
interest given structural parameters:

ẑ(s0) = E{Z|z(si), qk(s0), �(h), s 2 A}

where z(si) is the input point data, �(h) is the covariance model defining the spatial autocorrelation
structure, and qk(s0) is the list of deterministic environmental explanatory variables (covariates),
which need to be available at any location within A the geographic domain. In other words, a spatial
prediction model comprises list of procedures to generate predictions of value of interest given the
calibration data within the spatial domain of interest [55]. The most often used approach such
in spatial models is Kriging [33]. Kriging is an established geostatistical method of interpolation
that leverages spatially dependent covariance and establishes a best linear unbiased prediction
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of intermediate values; it does not require that data be normally distributed (and can incorporate
categorical data through multi-variate logistic models). Kriging relies on the underlying assumption
of spatial dependence (see Ha) and thus assumes that all random errors have zero mean and the
covariance between any two random errors depends only on the distance and direction that separates
them, but not their exact locations [48]. The primary assumption here is that observations closer
to the prediction point (in space or time) should be given more weight in the predictor.

Figure 8: Semivariogram based on preliminary
results of soil moisture measurements.

Kriging models can take various statistical
forms, such as basic, ordinary, and polynomial.
Typical applications to predict agricultural per-
formance and underlying processes have shown
that the variance structure can be estimated us-
ing Gaussian, exponential, and spherical forms,
which typically perform adequately if not better
than more elaborate forms [108]. This variance
structure is modeled as:

�(h) =
1

2
E[(z(si)� z(si + h))2]

where z(si) is the value of a target variable at
some sampled location and z(si + h) is the value
of the neighbor at distance si + h. In practice,
these methods can be used to test competing hy-
potheses by looking at the strength of various
predictors (e.g., Hs, Hp) and identifying e↵ective
sampling distance via the sill and range �(h) of the semivariogram (see Fig. 8 for a soil moisture
samples takes from Madera vineyard testbed). Complementary approaches here include regression
Kriging when residuals are autocorrelated [55] and indicator/block Kriging for raster classification
and integration [32, 69]. Standard ARIMA approaches will be used for time series detrending and
testing (i.e. Ht) and special cases of spatiotemporal Kriging will be employed too (i.e. Hst) [55].

Spatial Analysis Process. Data will be collected, synthesized and evaluated. Data evaluation
will include exploratory analysis to assess anisotropy and directionality. Additional data collection
may be required if point representation and geographic coverage is inadequate. Variograms will be
constructed and evaluated for its representation (i.e. nugget, sill, range) and residuals examined for
remaining trend. GLMs will be constructed for environmental predictorsHs and agronomic practice
Hp. Alternate models will be constructed to include any time dependencies (Ht, Hst). A subset of
data will be randomly withheld for cross-validation. K-fold cross-validation of the spatial models
will include evaluation of mean error (ME), root-mean-square error (RMSE), average standard error
(ASE), root-mean-square standardized error (RMSSE) and other measures of fit as appropriate.
Kappa statistic and other evaluative means of reliability testing will be used to asses accuracy.
Initial results will be incorporated into the feedback loop for iterative selection in subsequent
missions to build a library of sampled and resampled location, interpolated values, and change
in residuals. Fixed field measurements, such as absolute elevation (masl) using onboard real-time
kinematic GNSS, will be used to assess any model and instrument drift.

5 Broader Impacts

Dissemination of Results: We aim to build an active, iterative, sustained relationship of en-
gagement between industry, education and the general public through our broader impacts with

13


