# Collaborative Research: SaTC: CORE: Medium: Enabling Practically Secure Cellular Infrastructure

## **Challenge:**

5G fundamentally changes the operation and threat model of cellular systems by adopting an **open** and **multi-tenant** core.

Vast increase in capabilities and access to the core will spur innovation similar to smartphones in the late 2000's.

#### **Solution:**

We will use program analysis to

- Crypto: verify code assumptions made by formal protocol models
- Access Control: ensure correct specification and enforcement of policy that protects network tenants from one another.
- Core Functionality: ensure implementations are free of backdoors and logic bombs.

Analysis inherently spans the many microservice Network Functions (NFs) that comprise the 5G infrastructure.



Kevin Butler, U Florida, CNS-2055014

## **Scientific Impact:**

- Techniques to extract, model, and analyze security-sensitive logic in source and binary code of cellular network infrastructure.
- First work to investigate the software in cellular infrastructure; prior work is limited to formal analysis of protocols.

# Broader Impact and Broader Participation:

- The security of 5G software presents a significant risk to critical infrastructure.
- We will work with 3GPP and vendors to fix vulnerabilities and adopt our tools.
- BPC: new activities will attract underrepresented populations to CS through technology interaction to empower individual privacy.