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The ongoing research aims to
develop rules to study and methods
to coordinate a network of fully and
partially self-driving vehicles,
interacting with conventional
vehicles driven by people on a
complex road grid, so that overall
safety and efficiency of the traffic
system can be Improved. The
potential outcomes of the research
can add to the collective
understanding of more general
systems with hierarchical structures;
help create designs with minimal
computation and communication
delay; and provide mathematical
proofs for safety and reliability of a
class of systems that combine
physical, mechanical, and biological
components with purely
computational ones.

Researchers at the Control and
Intelligent Transportation Research
(CITR) Laboratory at The Ohio
State University and Cyber-Physical
Systems Laboratory (CPSLab) at
Arizona State University are
collaborating to address a series of
vehicular-CPS problems,  with
applications in the entire range of
Cyber-Physical Systems.
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Recognition and Prediction Framework for
Autonomous Driving in Mixed-mode Traffic

Motivated by our earlier efforts:

e “Autonomous

Driving

iIn Dense, Mixed Traffic

Environments” (OSU, NSF Supported)

Three main concerns:

1. Collaboration:

* Autonomous (semi-autonomous) and totally “human-
driven” in mixed-mode traffic.

» Subsets of vehicles making decision and exchanging

iInformation securely.

* Objective: Safe and reliable traffic flow.
2. Scalability:
» Scalability through hierarchies
* Grouping CPS entities as teams, convoys, regions, etc.
3. Testability and Verifiability:
 CPS calculus as a modeling and verification tool to prove
safety conditions.
« Automated selection of test parameters and initial conditions
through optimization methods

Real-time Traffic Scene Perception
via Deep Learning

Training

System Setup

Sampling from model distribution =

Alternating Gibbs Sampling: updating all

hidden units in parallel followed by
updating all visible units in parallel
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Dataset

4883 total training images

from both cameras

976 total test images from

both cameras

5 types of intersections:

1. Four-way stop sign
controlled.

2. Traffic light signal
controlled.

3. Cross walks without stop
signs.

4. Roundabout-type.

5. Three-way intersections.

Inference

1. Compute hidden var
visible pixels

p(hj =1|v) = a(g + X;viwy)

iables (features) , given

2. Compute new inferred visible layer pixels _
using the computed hidden features Given

p(vi|h) = a(b; + X; hywy;)

A Proposed Pipeline
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Design and implement a work pipeline that
allows to import real map information,
customize environment with realistic graphics
and import it into a 3D driving simulator.
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The Proposed Framework
A framework is proposed for recognition of driving intentions and prediction of

lane-change behavior on the highway.
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Determination of Driving Characteristic

General driving features are implemented to determine parameters of the driving

characteristic (D-Char): Z = {T, a, I c1, I cr}

« Parameters of IDM and MOBIL are independent to traffic conditions

« Four parameters are chosen from the Intelligent Driver Model(IDM) and the
Minimize Overall Braking Induced by Lane change (MOBIL).

* The hybrid state system

represent control systems
of human-driven vehicles.

* Driving Characteristic is

Uniquely determined.

* The driving characteristic

estimation and behavior
prediction methods are
proposed.

* Z;: Observation

- Position, velocity, and
acceleration of vehicles

» Z : Set of observations
e Z : Set of estimated driving

characteristics

* S;+1: Predicted the future

lane-change behavior

I, =adr—ap+035@,—a,+d, —a,),d={LCL,LCR} (1)
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Estimation of Driving Characteristic
Genetic Algorithm(GA) with evolving Takagi-Sugeno(eTS) online clustering
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Fitting Errors

method is implemented.

The eTS is implemented to update
constraints of parameters of IDM.

Parameter estimation performance
comparison via GA w/ and w/o eTS.

Car-following is simulated by using
IDM with arbitrary set parameters.

Fitting errors (MAE) of w/ and w/o
elS estimations are 0.0015 and

0.0032.

Estimation GA w/ eTS outperforms
the one w/o eTS.

Neural Network based Behavior Predictor

mm

Accu.

Preci.

Recall

F1

Five layered (single LSTM
neural-network is proposed.

238, 80, and 1312 sets for LCL, LCR,
and LK were extracted from NGSIM
US-80 highway data.

75% and 25% of data are used for
training and validation.

layer)

Prediction performances comparison
between training the predictor by using
observations(DNN2) and observations
+estimated D-Char (DNN1) to show
worthiness of D-Char implementation.

0.953 0.980 0.963  Accu. 0.835 0.943 0.842

0.794 0.875 0.984 Preci. 0.462 0.400 0.975

0.915 0.700 0.969 Recall 0.830 0.300 0.820

0.850 0.777 0.977 F1 0.835 0.943 0.862

An evolving method for autonomous driving vehicle control
* An evolving Finite State Machine is proposed to provide probability distributions
of future states for controllers to choose an optimal action.
« The rule-based and supervised-learning controllers cannot react under
unexpected situations due to no existing rules.

 Reinforcement-learning controller can

learn an optimal

action under

unexpected situations, but its performance is susceptible to a given reward

function.

An evolving Finite State Machine (e-FSM) Framework
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« States are determined as needed.
* An online clustering method, evolving Takegi-Sugeno (eTS) is implemented
to determine states that represent unique situations.

« State-set at time t is defined as S; = {s;(1),s.(2), ...

total number of states determined by time t (vary).

* Discrete action-set is implemented 4A; = {a(1),a(2), ...,

number of actions

« State-Transitions are identified and expanded by a stochastic method.

(fixed).

« Example of evolving sequence:
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