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Problem Description
• A learning-based security system often performs worse over time
• Concept drift caused by behavior changes from both benign and malicious players
• Periodic re-training demands significant labeling efforts

NSF Support
• CNS-2055233: SaTC: CORE: Small: Towards Label Enrichment and 

Refinement to Harden Learning-based Security Defenses
• CNS-2030521: CAREER: Machine Learning Assisted Crowdsourcing for 

Phishing Defense
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Assuming we will never have the representative labels, what can we do to significantly improve the 
adaptability and resilience of learning-based security defense with extremely limited labeling capability?

Method
• Self-supervision + domain-specific insights 
• Obtain supervision from the data itself 

o Contrastive learning
o Generative adversarial networks (GAN)

• Proactively detect drifting samples
• Enrich/refine noisy labels à higher-quality labels

Drifting Sample Detection (CADE - USENIX 21)
• Use contrastive learning to learn a compressed 

representation of the training data by contrasting 
with existing samples

• Identify incoming samples that do not fit in within 
any existing families

• Rank and cluster drifting samples for labeling
• Tested on real-world malware datasets

Open malware dataset for concept drift detection

Ongoing/Next Steps
Measurement
• Quantify concept drifts in real-world malware and

network traffic data; explore its reasons
Attacks
• Adversarial attacks that aim to manipulate concept 

drift detection and the data labeling process
Defense
• Robustify the model updating process

Work with Low-quality Labels (FARE - NDSS 21)
• Missing classes, coarse-grained labels, label scarcity
• Reduce uncertainty by combining

o Multiple simple unsupervised clustering algorithms 
o Given “noisy” labels (weekly supervised)

• Contrastive learning to
o Fuse given labels and clustering results
o Map data into a low-d space before final clustering)

• Evaluated on fraud detection
o E-commerce service
o Low false positive rate


