

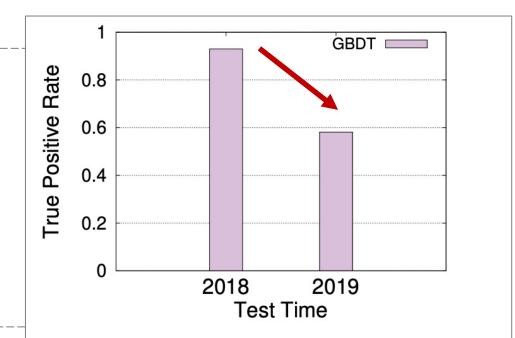
Combating Concept Drift in Security Applications with Self-Supervised Learning

жњ.
回設性

PI: Gang Wang, University of Illinois at Urbana-Champaign https://gangw.cs.illinois.edu

Problem Description

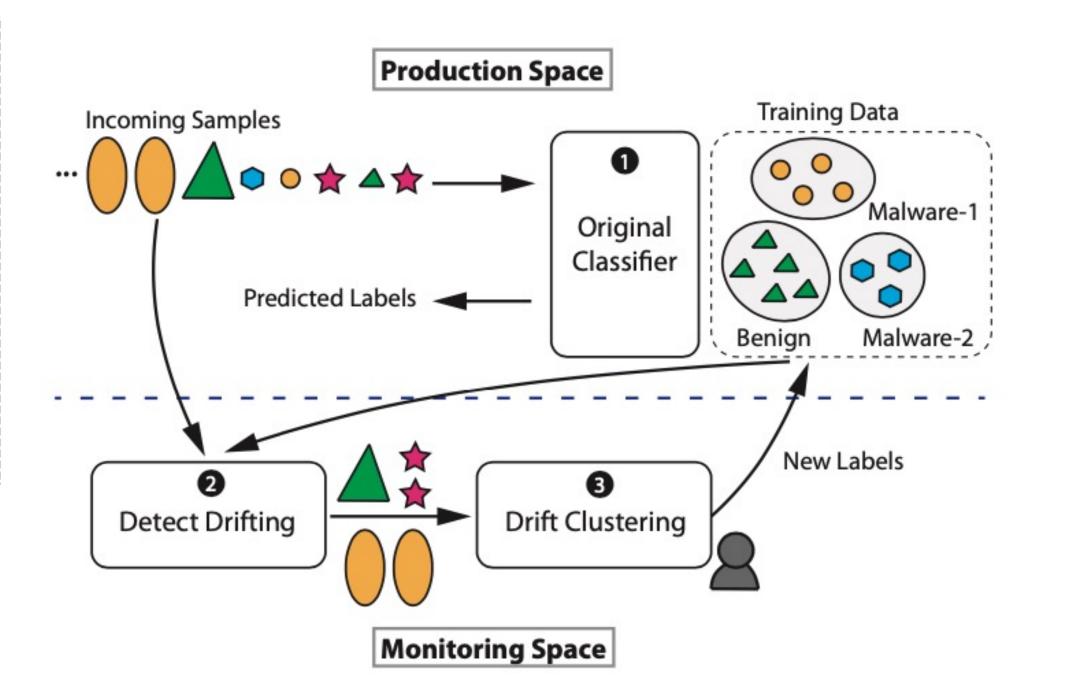
- A learning-based security system often performs worse over time
- Concept drift caused by behavior changes from both benign and malicious players
- Periodic re-training demands significant labeling efforts



Assuming we will never have the representative labels, what can we do to significantly improve the adaptability and resilience of learning-based security defense with extremely limited labeling capability?

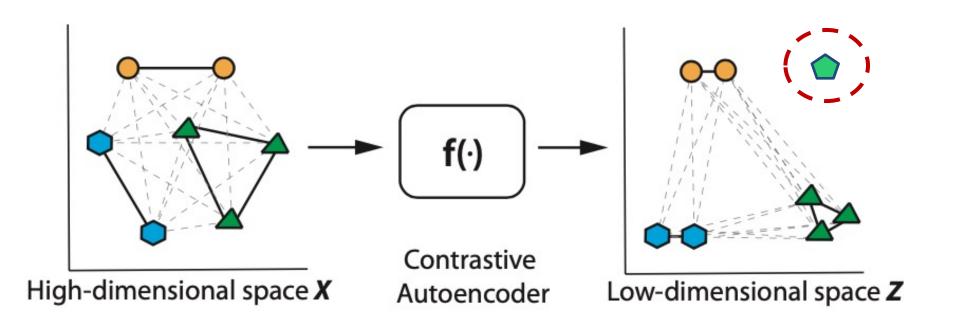
Method

Self-supervision + domain-specific insights



Obtain supervision from the data itself

- Contrastive learning
- Generative adversarial networks (GAN)
- Proactively detect drifting samples
- Enrich/refine noisy labels \rightarrow higher-quality labels

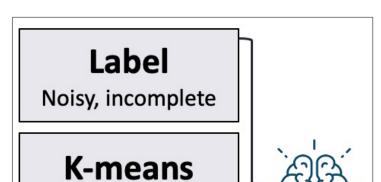


Drifting Sample Detection (CADE - USENIX 21)

- Use contrastive learning to learn a compressed representation of the training data by contrasting with existing samples
- Identify incoming samples that do not fit in within any existing families
- Rank and cluster drifting samples for labeling

Work with Low-quality Labels (FARE - NDSS 21)

- Missing classes, coarse-grained labels, label scarcity
- Reduce uncertainty by combining
 - Multiple simple unsupervised clustering algorithms
 - Given "noisy" labels (weekly supervised)
- Contrastive learning to
 - Fuse given labels and clustering results
 - $\circ~$ Map data into a low-d space before final clustering
- Evaluated on fraud detection
 - E-commerce service
 - Low false positive rate



DBSCAN

DEC

Open malware dataset for concept drift detection

Ongoing/Next Steps

Measurement

 Quantify concept drifts in real-world malware and network traffic data; explore its reasons

Attacks

- Adversarial attacks that aim to manipulate concept drift detection and the data labeling process
 Defense
- Robustify the model updating process

NSF Support

- **CNS-2055233**: SaTC: CORE: Small: Towards Label Enrichment and Refinement to Harden Learning-based Security Defenses
- CNS-2030521: CAREER: Machine Learning Assisted Crowdsourcing for Phishing Defense

References

- "CADE: Detecting and Explaining Concept Drift Samples for Security Applications". L. Yang, W. Guo, Q. Hao, A. Ciptadi, A. Ahmadzadeh, X. Xing, and G. Wang. Proc. of **USENIX Security**, 2021
- "FARE: Enabling Fine-grained Attack Categorization under Low-quality Labeled Data". J. Liang, W. Guo, T. Luo, V. Honavar, G. Wang, and X. Xing. Proc. of NDSS, 2021
- "It's Not What It Looks Like: Manipulating Perceptual Hashing based Applications". Q. Hao, L. Luo, S. Jan, and G. Wang. Proc. of CCS 2021

The 5th NSF Secure and Trustworthy Cyberspace Principal Investigator Meeting (2022 SaTC PI Meeting) June 1-2, 2022 1 Arlington, Virginia