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Generated VirusTotal reports for 1,456,350 apps released  
between 2016 and 2018
Generated VirusTotal reports for 339,853 apps released 
between 2018 and 2019
App scanning using VirusTotal lasted one year and a half

• The ability of DL approaches to automatically identify predictive 
features could benefit mobile app vetting systems

• Efficiently applying DL for large-scale malware detection comes 
with its own challenges

• The ML vetting system in our study uses apk features to 
classify benign and malicious apps

• Specifically, each app is represented using 471 binary features 
which represent permissions, intent actions, discriminative 
APIs, obfuscation signatures, and native code signatures
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Traditional Machine Learning (ML) Based Vetting System 

Deep Learning (DL) Based Vetting System 

Datasets – used for both Deep Learning and traditional Machine Learning experiments  
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• Feature engineering has to keep up with evolving app trends 
• More training does not always lead to better performance

• We experiment with datasets that exhibit realistic malicious-to-benign ratios (e.g., smaller than 0.05)
• We use the area under the precision-recall curve (auPRC) to evaluate classifiers’ performance 
• Experimented with Bernoulli Naïve Bayes, k-Nearest Neighbors, Support Vector Machines, and 

Random Forest classifiers
• K-Nearest Neighbors and Support Vector Machines take much longer time (days) 
• The performance of traditional ML classifiers degrades for highly unbalanced data

AMD malware dataset (2010 – 2016): 24,553
Newer benign (after 2016): 370,701
Newer malicious (after 2016): 24,868

Create 
datasets

• For each app, it feeds the corresponding raw apks into the 
preprocessing layer, and generates an API call sequence

• Applies different embedding techniques (e.g.,Word2vec) to 
generate embeddings for API calls (regarded as “words”) 

• Each app, represented as a sequence of (max) 4000 API calls 
using the API call embeddings, is fed into a Long Short-Term 
Memory network (LSTM)

Overview of DL Vetting System

Benefits & Challenges

Main Challenges

Experiments with Traditional ML Classifiers

Predictive Power of Static/Dynamic Artifacts 

DL versus Traditional ML Results
• Both traditional ML and DL classification models have good 

performance on balanced data
• Performance of both traditional ML and DL models decreases on 

unbalanced data
• DL model has better performance on highly unbalanced data


