Compositional Synthesis of Multi-Robot Motion Plans via SMT Solving **Indranil Saha**

(UC Berkeley & UPenn)

Background

Goal

To synthesize motion plans automatically for a group of robots with complex dynamics for complex specification

Existing Solutions

- Generate a finite abstraction for the robot dynamics
- Generate a finite model for the property
- Apply a game theoretic algorithm to generate a high level plan
- Generate low level control signals that satisfy the bisimulation property

Computationally expensive.. Not suitable for multi-robot systems

Problem and Solution

Problem Instance

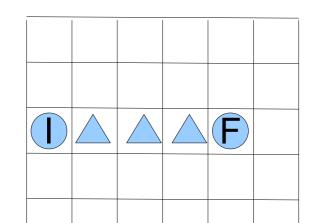
An input problem instance $\mathcal{P} = \langle N, I, F, PRIM, OBS, \xi \rangle$

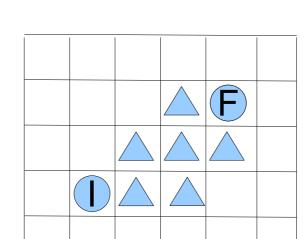
- N Number of robots
- I (F) Initial (Final) state of the group of robots
- $PRIM = [PRIM_1, PRIM_2, \dots, PRIM_N]$
- OBS The set of obstacles
- ξ $\Box \Psi$, conjunction of a set of invariant properties

Problem Definition

Motion Plan. A *motion plan* of a multi-robot system for an input problem instance $\mathcal{P} = \langle N, I, F, PRIM, OBSTACLES, \Box \Psi \rangle$ is defined as a sequence of states $\Phi = (\Phi(0), \Phi(1), \dots, \Phi(L))$ such that

Approach


- We assume availability of a set of precomputed control laws for each robot
- We use an off-the-shelf SMT solver to generate motion plans composing these motion primitives


Motion Primitive

Captures closed-loop behavior of a robot under the action of a controller A motion primitive is formally defined as a 7-tuple: $\langle u, \tau, q_i, q_f, X_{rf}, W, cost \rangle$

- u a precomputed control input
- τ the duration for which the control signal is applied
- q_i (q_f) initial (final) velocity configuration
- X_{rf} relative final position
- \bullet W the set of relative blocks through which the robot passes \bullet cost - an estimated energy consumption for executing the control law

 $PRIM_i$ - the set of all primitives for robot *i*

 $\Phi(0) \in I \qquad \Phi(L) \in F$ $\Phi(0) \models \Psi$

and the states are related by the transitions in the following way:

 $\Phi(0) \xrightarrow{Prim_1} \Phi(1) \xrightarrow{Prim_2} \Phi(2) \dots \Phi(L-1) \xrightarrow{Prim_L} \Phi(L)$

Motion Planning Problem. Given an input problem \mathcal{P} and a positive integer L, synthesize a motion plan of length L + 1

Transition Constraints

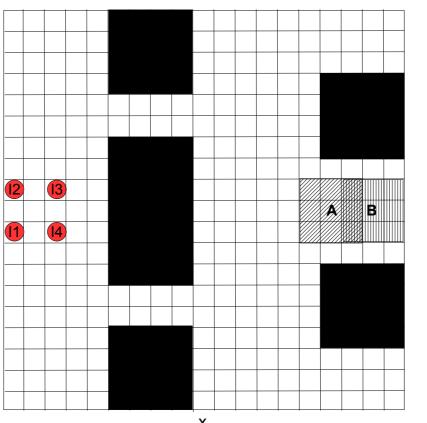
$$\Phi_1 = [\phi_{11}, \dots, \phi_{1N}], \Phi_2 = [\phi_{21}, \dots, \phi_{2N}]$$

 $Prim = [prim_1, \ldots, prim_N]$, where $prim_i \in PRIM_i$.

A transition

$$\Phi_1 \xrightarrow{Prim} \Phi_2$$

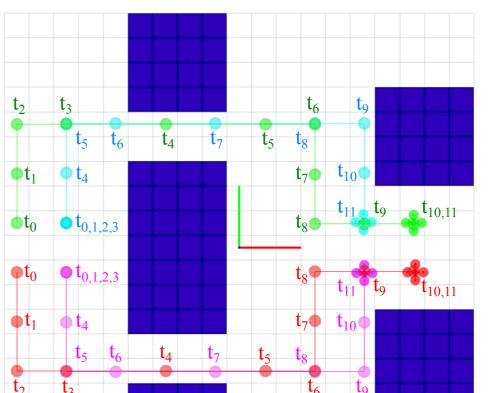
is associated with the following constraints:


- $\forall i \in \{1, ..., N\}$: $\phi_{1i}.q = prim_i.q_i, \ \phi_{2i}.q = prim_i.q_f, \ \phi_{2i}.X = \phi_{1i}.X + prim_i.X_{rf}$
- *obstacle_avoidance*($\Phi_1, \Phi_2, Prim, OBS$)
- collision_avoidance($\Phi_1, \Phi_2, Prim$)

$$\bullet (\Phi_1 \models \Psi) \to (\Phi_2 \models \Psi)$$

Constraints are solved using an SMT Solver

Examples Specification 1 Specification 2 **Goal:** I1 \rightarrow F1, I2 \rightarrow F2, I3 \rightarrow F3, I4 \rightarrow F4 **Invariants: F2** • Maintain a rectangular formation 12 13 **F1 F** • Maintain a precedence relationship • Maintain a minimum distance



Goal: (I1 and I2) \rightarrow B, (I3 and I4) \rightarrow A

Invariants:

- Maintain a rectangular or linear formation
- Maintain a minimum distance


No motion plan that satisfies the formation constraint exists

 $t_{2,3}$ t_2 t_2 • t₁ • t \bullet t₀ \bullet t₀

Specification 1 (Optimal Trajectory)

•t_{2,4}

 $\bullet t_0 \bullet t_0$

 t_3 t_4

Specification 2 (Sub-Optimal Trajectory)

2	- 3					0			

Specification 2 (Optimal Trajectory)

Future Directions

- How to handle arbitrary LTL specification ?
- How to deal with change in environment?
- How to scale the synthesis to a large number of robots?
- How to deal with disturbance and uncertainty?

Potential Impact

- Automated and scalable mechanism to solve multi-robot planning problem for complex specification
- Many applications monitoring, surveillance and disaster response, traffic control..

Joint work with Rattanachai Ramaithitima (UPenn), Vijay Kumar (UPenn), George Pappas (UPenn) and Sanjit Seshia (UC Berkeley)

