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Abstract

Designed largely from an energy generation and power distribution perspective, todays electrical power grid is faced with
significant challenges in meeting growing demand in the face of an expanding variety and distribution of energy sources and
increased requirements for local control, robustness, resilience and efficiency. Unlike many traditional distributed systems and
control problems, the driving forces underlying energy demand include economics and human behavior. The electric power grid
is poised to undergo a revolution from a largely centralized system built for long-haul distribution to a more decentralized system
with more emphasis on local production and intelligent distribution to reduce system complexity; improve power management,
system resiliency and security; and minimize cost and power loss. Enabling this revolution necessitates the combined expertise
and synergy of several disciplines including power systems, computer science, telecommunications, and economics. In particular,
problems such as optimal scheduling of demands and determining how to best meet those demands given a variety of potentially
energy generation and distribution choices pose novel computational challenges and present exciting new interdisciplinary research
opportunities.

I. SMART GRIDS

It is expected that demand for electricity in the U.S. alone will increase 25%-50% by 2040 from the 2011 demand [1]. This
dictates the need for an increase in generation capacity, much of which is expected to be in the form of distributed generation
(DG), mainly at the distribution level (voltage) [achieved mostly via alternative energy DG (AEDG) including some highly
heterogeneous sources e.g., wind, solar photovoltaic (PV)]. In addition, there are tremendous efforts and planning underway
to modernize the electrical grid; defining how to achieve “smart grid” solutions [2], [3]. Key attributes of future smart grids
include higher reliability, improved power quality, stronger energy security, and improved system efficiency. In this regard,
two enabling technologies stand out towards the achievement of these smart grid objectives: microgrids and hybrid renewable
generation systems. Microgrids, defined as a collection of localized generation, load, and storage assets that are integrated
and controlled independently, offer a distributed means of autonomously controllable power system entities, which can operate
in islanded or grid-connected modes. The proposed smart grid system includes local control and data acquisition and will
require extensive communications capabilities. The local power generation, consumption, and storage units are intelligent with
information-processing capability to respond to power supply and demand within the local microgrid. We envision that local
units will operate in a distributed manner. The optimization and control problems will be solved locally but computationally
hard problems with real-time requirements might be most cost-effectively solved using cloud-computing resources.

II. EXAMPLE ONE: EFFICIENT POWER DISTRIBUTION AND CONTROL IN SMART GRIDS

As power generation becomes more decentralized, determining how best to distribute power in grids and microgrids becomes
a key component in increasing efficiency, reducing costs and limiting losses. For example, if there is excess generation capacity
at one production facility it maybe more cost effective to increase its production rather than bring another resource online.
Likewise, if several paths of distribution can be used to reach consumers, the paths may have different marginal costs. This
bears some resemblance to “green networking” problems where networking resources can be turned on at some energy-use
cost and the problem is to meet traffic demand adequately, while minimizing energy-use [4], [5]. It has been argued [6] that
the grid system shares a number of similarities with the Internet and that the similarities will increase as the grid evolves into
a smarter and more distributed system.

There are potentially multiple objectives (e.g. generation cost, distribution cost and loss, CO2 emissions, etc.) to consider
in determining the optimal levels of production and each generation source and how best to distribute this generated power
to the intended users. For example, suppose we seek to determine the production levels, say gi, of the i-th generation source,
given the demand dj of the j-th load. If we consider electrical power as a “single-commodity flow”, then the problem becomes
that of minimizing the above mentioned linear cost objective function subject to conservation of power flow, generation and
demand constraints being met. The problem is further complicated as there is some loss along the distribution links; this loss
must be taken into account. In addition to losses, there can also be operational costs in the distribution system; such costs may
contain a fixed component (a start-up or initialization cost) and potentially a cost that scales proportionally with the flow/load
associated with the component. As an example, Hedman et al. [7], considers switches in the transmission system and finds the
optimal power flow over the system considering that you can open and close the switches. The switches change the topology
of the network and thus affect power flow over the network according to Kirchhoff’s laws.
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III. EXAMPLE TWO: POWER SCHEDULING

Smart grid technology has the opportunity to revolutionize our visibility and control over power consumption at both the
consumer and utility provider levels. Smart appliances and appliance specific energy traces will provide the ability to track and
control power draw for individual appliances. This capability will enable consumers and utility providers to control costs by
shifting demand based on current load, projected load, and flexibility of appliance specific job parameters. Currently power-
requesting jobs are scheduled in an on-demand fashion; power draw begins when the consumer requests power (turns on an
appliance) and ends when the job is complete (appliance is tuned off). Often such jobs may have some flexibility in their
starting times (e.g. a dishwasher or electric vehicle charger). Recently, we looked at the problem of scheduling power jobs so
as to minimize peak demand (see Figure 1) [8].

Fig. 1. Non-preemptive power jobs to be scheduled. Jobs, j, are defined as 4-tuples: (aj , dj , lj , hj ), where aj is the arrival time and dj is the deadline
within the time interval [0, T ], lj is the job length (duration), and hj is the job height (instantaneous power requirement). The goal is to schedule jobs in
such a way as to minimize the peak power demand within the schedule.

While the problem turns out to be computationally challenging, we were able to advance the state-of-the-art as follows:
1) First we considered a general version of the problem in which the job intervals can be staggered. While the problem is

known to be NP-hard (we show it is even NP-hard to approximate), we presented an optimal algorithm (PDM-Exact)
based on dynamic programming that is fixed-parameter tractable (FPT), as well as an effective heuristic algorithm
(PDM-Heuristic).

2) We developed approximation algorithms for some special cases: When jobs have the same arrival times and deadlines,
we presented a 4-approximation algorithm (PDM-CW). Prior to our results, a 7.82-approximation algorithm was the
best existing algorithm [9]. For a special case of the peak demand minimization problem where jobs cannot be nested
within each other, we presented a O(log ∆)-approximation algorithm, where ∆ is the ratio of the widest job to the
narrowest.

3) Based on recent energy disaggregation results [10], we modeled power demands for appliances (e.g. dishwasher,
washing machine, dryer) and compared our algorithms against simple on-demand scheduling and some other recent
approaches [9]. Figure 2 shows some of our results.
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(a) Domestic Power Scheduling (24 hour scenario)
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(b) Comparison with Optimal

Fig. 2. Some recent results on peak demand minimization from [8]; peak power demand can be lowered considerably using intelligent job scheduling.

Peak demand minimization is by no means solved; the case where the input contains preemptive jobs should be considered
as well as online and distributed versions of problem.
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