
Computational Tools for Human-Robot
Interaction Design
David Porfirio1, Maya Cakmak2, Allison Sauppé3, Aws Albarghouthi1, Bilge Mutlu1

(1) University of Wisconsin–Madison, (2) University of Washington, (3) University of Wisconsin–La Crosse

2020 National Robotics Initiative (NRI) Principal Investigators' Meeting
FEBRUARY 27 - 28, 2020 | ARLINGTON, VIRGINIA

We have developed a series of so�ware tools to assist with the design of human-robot interactions with social robots. Each
of these tools recognizes that interaction designers have varying levels of expertise in both programming and the domain of
the interaction that is being designed. Our tools rely on concepts from programming languages to provide assistance to
designers when programming human-robot interactions.

interaction
visualization

Model View

Trace View

bodystorm history pane

options pane

Trace Editor

Verifying Social Norms
We designed a visual programming
environment, RoVer, which enables
interaction designers to visually
program human-robot interactions.
RoVer employs formal verification
to ensure that designed interactions satisfy a set of social
norm correctness properties.

We found that designers were able to more easily identify
and understand social norm violations when using
assistance from formal verification.

The RoVer interface.

The pipeline through which RoVer provides feedback to designers.

Capturing Designer Intent

We designed another programming environment, Synthé,
which records design teams role-playing an interaction
between a human and a robot, and synthesizes an
interaction based on their performances.

The Synthé interface.

Designers role-play an interaction
between a human and a robot.

Synthé represents designer performances as execution
traces. We found Synthé to be effective in solving interaction
programs that accept user execution traces.

Automatically Transforming Interactions

An example of how program synthesis works within Synthé.

We designed and implemented a system for transforming
robot programs based on feedback from a social context.

An example setup for collecting feedback from users.

In our system, end-users experience and rate execution
traces of an interaction design.

In our system, end-users experience and rate execution
traces of an interaction program. A repair algorithm then
transforms the interaction program structure such that
poorly-rated traces are excluded, while positively-rated
traces are included. Our evaluation shows limiited evidence
that this system improves user experience over time.

A cycle of collecting user feedback and transforming the interaction.

Award ID #s: 1651129
1925043

