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What to do if my control algorithm does not
terminate when an input is needed?
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computation time?

Feedback provides robustness to small computation time, but computing
time could be large, specially in optimization-based approaches
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Computationally-Aware Algorithms driven by
Applications
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MPC for Diesel Engine
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UAVs in the National Air Space Self-driving Cars

(courtesy NASA) (courtesy TOYOTA)
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Different timescales*

Lifestyle change Commute Car Navigation
. OT_C Pain Stability controller
Energy Bills Giving Birth relievers
. malloc
Gas Prices River flow
Traffic Router
Shipping flow

Timescale of feedback/coupling

; ( ( ( ( ( q + 1 [y T
ceeceee Water
| * v Temperature

Electricity prices

Chip Computer
Surgery HVAC set Thermal Clock
Agriculture/ point Mgmt
watering Mgmt
Java GC

* Not to scale. It’s not like | plotted this in MATLAB or anything...
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Problem for vehicle control: comfort

http://www.youtube.com/watch?v=ChZwuj3hCvw
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Or worse...




Consider a moving ground vehicle
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State update State update State update State update



When computing a control decision...

2 4 2

State update State update State update State updat
Control input Control input Control input
Calcs. complete Calcs. complete Calcs. complete
) Deadline Missed
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What if an obstacle moves while we compute?

Obstacl
e

[(,

4 5

State update State update
Control input Control input
Calcs. complete Calcs. complete

Obvious design goal: Reduce the period for state update/control input as much as possible.

This is a motivating animation, not a kinematic simulation.
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Model-Predictive Control: Plan Trajectories at Runtime
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Model-Predictive Control: Plan Trajectories at Runtime
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Model-Predictive Control: Plan Trajectories at Runtime
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e

| :




Model-Predictive Control: Plan Trajectories at Runtime

Obstac| Small margin

for error
e/




Easy...I'll use an accurate vehicle model to predict the
trajectory and avoid the obstacle.

Obstacl
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Takes longer to compute control inputs




Easy...I'll pick a simpler vehicle model to make it
more likely to return control inputs in time

o

Obstacl
e

That control input does not mean what
you think it means.
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Competing constraints

|
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High accuracy model: takes longer to optimize.

High vehicle speed: cannot tolerate slow return time.

Low accuracy model: cannot accurately predict all maneuvers.

A



Goal: Computationally-Aware CPS

1. Consider the time required to perform
the computation.

2. Switch between controllers using
accuracy and time as switching criteria.

3. Explore conditions for stability and
convergence.



Problems: MPC return time

A complex model may
introduce predictive accuracy,

 however, this increases the
computational burden.

« Especially under high speed,
the system cannot tolerate a
slow return rate.

The car is executing the previous control sequence
while waiting for the new control sequence
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Problems: control accuracy

The return time problem can
be addressed via model
reduction,

« potential drawback is
higher model mismatch.

Model mismatch can also
introduce problems.

 Wrong prediction
« Infeasible trajectories

obstacle

Based on the predictive model, the car\\
should be able to avoid the obstacle.

But the car actually steps into the obstacle
due to the model mismatch.
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Model Predictive Control

fk,t+1 — fq(fk,tauk,t)
te{k,k+1,--- ,k+ N —1}

MPC solves the optimization problem P9(&) at time k by using the model
fg- We denote the input sequence {uf p,uf ; 1, ,ug . ny_1} by Uy, and
formulate the following problem:

PY(¢,) : argmin{J (&, Uf) : U C R™)
Uy

k+N—1
NEUD = D L& ul )+ F(E] i)
t—Fk
= {Uk ka“k k+10 7T 7UZTk+N—1}
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Problem Modeling

& =~ &k + [ (& up_q )AL

§kr1 = f(f;m Kq(€k)) = fq (&> Kkq(€k)) + fq(f;c)

S a6 ral6) + Tol6i) + (afq Crfaltr)) e (5’3;‘1(5’“”) F (6 rolEs)) Do 6)

k[ e AT

MPC : |
returns solution at k+ At \ Control input holds for hTsecondS
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Problem Statement

Suppose at time k € {0, 1, ---}, the vehicle state £ is observed for an opti-
mization problem indexed by the predictive model in use (i.e., P9(£x)), and that
two alternative predictive models are available.

supervisor |
logic B

— > KMPC

CarSim plant

. DMPC

Problem: select the predictive model g such that the divergence of the state at
&, from the plant’s state with the same inputs is minimized.
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Kinematic/Dynamical Models
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vsin(6)
v cos(0)
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Hybrid MPC Design

v sin(6)
vsin6 v co2$ (9) .
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Hybrid MPC Design

)= axgmin 61 — €8

q
To make this decision, we need to know two things:

(1) Model mismatch (2) Return time for MPC for this model

Jeuss = ]| [Patef] 7+ X CosgrDar] 17 et
s - €| [P+ oty + (o)’




Model Mismatch & Return Time
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Model Mismatch

Positional Divergence Rate (unit: meter)
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Model Mismatch

Azimuthal Divergence Rate (unit: rad/s)
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Time to return
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Uncontrollable divergence
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Uncontrollable divergence: DMPC

At, = 0.05 (DMPC value)

0p OO

it =

v sin(6)
v cos(0)
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Uncontrollable divergence: KMPC

At, = 0.02 (KMPC value...)

g i A

970 = |ycosf
v tan é




Uncontrollable divergence: KMPC with large steering

At, = 0.02 (KMPC value...)

e

=9 = |wvcosf
v tan ¢
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Steering Angle (3¢)
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Take the fit data and utilize linearization techniques
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Scatter plot with comfort controller

Velocity vs. Steering Angle with a Comfort Controller
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Simulation
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|~ Comfort Curve




Hybrid MPC Design

Comparison of UDs

Speed(m/s)

-10

Steering Angle(deg)



Hybrid MPC Design

Feasible regions of DM (red point) and KM (green star)
*

tire angle(deg)

speed(m/s) 25



pasition in y-axis(m)

Simulation Results

80 -
KMPC controls the CarSim model
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pasition in y-axis(m)
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Simulation Result

DMPC controls the CarSim model
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Simulation Result

MPC(Dynamic Mod)

Speed =7.101849 m/s

Tire-angle = 15.335192 deg

solve elapsed time = 0.046000 sec
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What about lots of obstacles?



Simulation Result
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Simulation Result
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What if I don’t have a car?

Unswitched

File Edit View Insert Tools Desktop Window Help
Dade h KLU R- 2 08 a DO

Switched




Application of switching MPC

File Edit View Insert Tools Desktop Window Help
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Application to Quadrotor Obstacle Avoidance




CACPS Current efforts: Design with time-awareness

1. Overcoming time-awareness challenges

> Ensure timeliness for critical applications

. e L " Approach
> Reliability for verification and composition

Planned 1. Knowledge of
Obstacle computational

components time
performance
\/ 2. Design to achieve
computational

constrains
3. Self adaptation to
Executed .
computational load,

Obstacle by trading accuracy
[( with specification
through an hybrid
/\/ approach.

Perception time,

Computation time lag



CACPS Current efforts: Design with time-awareness

2. Quantifying computational burden

WCET / WCRT
> Quantifying time performance I
= Hardware: system’s architecture
= Software |
= Network induced
o
.01 0.02 0.03 0.04 tir(r)].eO?mS] 0.06 0.07 0.08 0.09 0.1

> Approach




CACPS Current efforts: Design with time-awareness

2. Quantifying computational burden
> Quantifying time performance
= Characterizing return time and defining boundaries for algorithms

Return Time of MPC 1
1500 T T T T T T T T T

1000

500 +~ -

0 1 1 1 e | 1 1
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Return Time of MPC 2
1500 T T T T T T T T T

1000

500

b p— Lo 1 1

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

> Reactive and time-adaptive controller design
Incorporating time characterization in the design process

P--%



CACPS Current efforts: CA Predictive Control for CPS

3. Predictive control that is robust to computation time uncertainty

v

| S Pl 2 = Ml w)

> Computation time  7.-isuncertain due to :
Hardware variability

Delays and data losses "
= Computational complexity

'(.‘an'.r;.lk-r; & Zms Tin ) L
> Approach
Hybrid system modeling
At samplinginstants, T L.isuupdated via the difference inclusion:
.]‘('('unp € ['I‘Hllup ’ 'I‘(‘a nnp

while in between sampling events, it decreases to zero linearly.

’];‘nnlpojs;----‘--_-;----‘-----.-_---- --—;

]-:'n]ull 0:3\:-:

"I:‘-'HN o

Design control algorithm to compensate for all possible values of

o

Sumple

ZOH |
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Accomplishments during first year of performance
and ongoing efforts

Summary of milestones reached (first period of performance):
e Formulation of model of computationally-aware CPS (CACPS)
e Derivation of uncertainty divergence (UD)

e Application to ground and aerial vehicle applications
Ongoing efforts:

e Overcoming time-awareness challenges

e Quantifying computational burden

CACPS Student
Team:

;
.
‘3 -
4
l -
2
f ;
:,’: A
7

+ 2 Undergrad students ,, . \\h
+ 2 High School inters Berk Altin Nathalie Risso egeta Zeleke
\ (postdoc, UCSC) (grad, UofA) (grad, UCSC) /
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CPS: Synergy: Collaborative Research

Computationally Aware Cyber-Physical Systems
Ricardo Sanfelice (UC Santa Cruz NSF 1544396) , Jonathan Sprinkle (University of Arizona, NSF 1544395)

Challenge:

u

* Include computation time physical Y

information at runtime as

part of the controller’s g

design for switching criteria j_\‘—l“ DAC ADC
« Do not give up accuracy to ZOH Y pees——

improve computation time . /‘; w/model 1
R ~logic based on |~ g 1l

3 3 L — - - - ’

Solution: computation time \ g' | w/modeln

* Metric for switching criteria "ok T —]

cyber I

* Basis in accumulated error
for predictive controller
* Hybrid control approach

* Trade off between time to
compute and accuracy

UAVs in the National Air Space Self-driving Cars

(courtesy NASA)

Scientific Impact:

« More specific controllers
made available, based on
available computation power

* Increased confidence in
runtime controller, if switched

Broader Impact:

* Less conservative controllers
mean closer flight patterns

* Benefits to ground and
aerial vehicle control
systems

* Applications to
undergraduate team test
beds

* ~20% reduction in average
return time for dynamical
models without
compromising stability




Thank you for your attention!



Back up slides



Sufficient conditions for asymptotically ultimately

bounded

Why consider boundedness?
(1) Minimizing UD does not automatically ensure stability.

(2) An overall system consisting of stable subsystems is not necessarily stable.

These sufficient conditions are switching constraints.

A system is asymptotically ultimately bounded aa .
if the system evolves asymptotically to a 7 =TT
. ign - ~ N
bounded set, i.e., there are positive constants b~ .* 7 - \C
and c, and for every 0<a<c, there is a time K ;S 7 \
such that I S X \
II I, P L e \\a \‘
/ / / \
L 4 \
T T 4 )
| | |
\ | I
\

||§0 T ng < a = |I§k _ gr“ < b, VkE > K
a
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If the following assumptions are satisfied by a candidate CPS, then this work can
be applied:

e The target state &, for the system f(£,4) and the predictive model f4(¢, ),
g € Q is an equilibrium; namely, §, € X, and f(§,,k%(&,,0)) = & and
fq(éra K,q(é,-,O)) = ér-

e The horizon is long enough; Vg,q¢ € Q, S¢,, + S%, < N. This prevents the

depletion of control inputs while waiting for MPC return.

e In order to ensure that UD is bounded, Qa-[;i, %’;—q, VK4, and 7 are required to

be bounded V€ € X, Vit € U and Vg € Q.

e Implicit MPC control through x9(-,-) will always drive the plant within the
feasible state space X', and nq(f,z’) €U, VEe X and Vi € {0,1,--- N — 1}

s 1§



Long horizon examples

20
N

20

N=36 Py U N=540

This permits the use of a “dwell-time” approach to determination of stability.

s



It doesn’t always work.

Reference Plant: The reference plant f is formulated by

inearized around 0, but multiplied by rho

& = —gsin(f) + u, cos(0) /m — uy sin(0) /m — ez /m

i = g(cos(0) — 1) + u; sin(6) /m + uy cos(8) /M — cy/m |

0=ru/J
Predictive Model 3 (¢ = 3): The third predictive model is a linearized version of
remove the IaSt te rm the reference plant about the origin, but the equations are then multiplied by p:

&= (uw/m+ (—g —ug/m) — ci/mb) p

Predictive Model 1 (¢ = 1): The first predictive model is derivsd fr i = (ua/m +ur /m — cj/m) p

reference plant by removing the last terms: .
0= (rus/J)p

% = —gsin(f) + uy cos(6)/m — u, sin(6)/m where p = 0.95 is deliberately selected to adjust the model’s accuracy.

i = g(cos(0) — 1) + u, sin(f)/m + uy cos(8)/m
6= ru/J
linearized around O

Predictive Model 2 (g = 2): The second predictive model is a linearized version
of the reference model about the origin:
Z=u/m+ (—g—uy/m)b

i = ug/m+ uy /mb
6 =ru/J

Yo N



Each model converges

xposn:@on
_ 1 20 Yposn jon
b, AN T T T | —-—- theta T T T
RMPC = max | max(—)7, max { ——v ) |R% ol = = B Yx _
g ‘a4 g \a?ad \ e ot theta
1 1 —— e — e o ———
350\ 2 /350350 2 == === SE—
= max({ — ) , | =====-0.95) )0
q 250 250 250 10 .
p— O _20 L 1 L 1 1 L 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
20 p—
14
0.8
0.6
0.4
hel
g 024
8 . 1 1 | |
£ 0:~ N 0 100 200 300 400 500 600 700 800 900 1000
0.4
!
. 1 1 1 1 |
0 100 200 300 400 500 600 700 800 900 1000

Numerical results of the superlevel sets of all three models suggest that each of these three
MPCs can bound the aircraft to the origin, or at least a small ball containing the origin with a
radius smaller than the discrete spatial steps.

o



Make model-3 less accurate

theta (rad)

As d decreases: although the superset Ld(AVq=3(é )) has fewer points, the points in

these two figures cover a similar area, and the set Ly(AV9=?(£)) will not shrink in

an obvious way by decreasing d.

Pc-Q



For rho=0.5, and d=1

500 speed of x = 0.5
speedof y=0.5
speed of theta = 0
O ettt 0.08
T 5 006
500 £ 0.04
-]
-1000 X position 2 0.02
y position = 0
——— thetad ]
— — speed of x }
1500 | — — sgeed ofr 098 20
speed of theta 5 =
-2000 L ! 1 1 1 1 1 1 1 | y (m) 0 10 0 5 x (m)
0 100 200 300 400 500 600 700 800 900 1000
speed of x =2.5
speed of y =2.5
50 - speed of theta = 0
0.15
0
.50 8 o1
s
-100 £ 005

-150

a8

30

-200

15
x (m)

10
y (m) 0 100 5 10

1 1 1 1 1 |
0 100 200 300 400 500 600 700 800 900 1000

-250 L

The boundary is not found even when
the state reaches x=30 m and y=30 m.

In this situation, the models do not satisfy the necessary conditions in order to use the
uncontrollable divergence as the switching metric. It confirms that the approach requires
some analysis in order to use the design methodology with confidence.

PccQ
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Return time

theta = 0.06 rad

V X

speed in y-axis
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speed in x-axis



CACPS Current efforts: Real Time Predictive Control

Functions f,(x, u), g=0,1,...,N of varying fidelity.

- o Plant: & = fir, ] — -

Samnle

: |

ZOH

L .

Controller O Aoz, T -

Controller 10 A (2, Tyl =

Switching MPC

Findarue & : I —toBwitch between prediction models 4, with respecttoa

safety-accuracy trade-off.




Hybrid Model of RHC

Basic model with measurement state anditimer :  Tm

- o Plasit: 2= flr, u) -

.
S.’xl’.'xpln

2OH

I

(bﬂ'.f;.“('f. fsf;’“,. rll.: »

(., is the minimizer of
T
J(2Zy,12) = j Flaeis),uls))ds — Vilz2(T))
0

with initial condition 7,



Current Work: RHC with varying Horizons

Closed loop state:

A ’ .
-, i [ A\l . : ’ _—
2= (2, TmsTm 14, Tc)
- o
»

(plant state. sample. sampling timer, prediction horizon, controller timer)

Difference inclusion model with:
:3 — N 1](:}‘ Tlll (: [[)' "[']“]‘
a | ~ \ { » ) -~ " — 1
& = ('(Il' A l 'm = {”}-

The setvalued map  (allows

> intermittent sampling (due to delays, losses etc.), and
> varying horizons for flexible control to compensate .

Stable provided  i§'@ control Lyapunov  function!
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