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What to do if my control algorithm does not 
terminate when an input is needed? 

sample	

update	

computa8on	8me?	
Feedback	provides	robustness	to	small	computa8on	8me,	but	compu8ng	

8me	could	be	large,	specially	in	op8miza8on-based	approaches	
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Computationally-Aware Algorithms driven by 
Applications 

UAVs	in	the	Na/onal	Air	Space		
(courtesy	NASA)	

Self-driving	Cars	 MPC	for	Diesel	Engines	
(courtesy	TOYOTA)	

sample	

update	

Exploit	models	of	the	
physical	system	w/	
different	accuracy	

to	reduce	
computa8on	8me!		

Trade	off	



4	

Different timescales* 

Timescale	of	feedback/coupling	

Energy	Bills	

Gas	Prices	

Shipping	

Surgery	

Water	
Temperature	

Electricity	prices	

Lifestyle	change	

Agriculture/
watering	

*	Not	to	scale.	It’s	not	like	I	ploUed	this	in	MATLAB	or	anything...	

Commute	

River	flow	
Traffic	
flow	

Giving	Birth	

OTC	Pain	
relievers	

Car	Naviga/on	

Router	

Computer	
Clock	

Chip	
Thermal	
Mgmt	

HVAC	set	
point	
Mgmt	

Java	GC	

Stability	controller	

malloc	
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http://www.youtube.com/watch?v=ChZwuj3hCvw 

Problem for vehicle control: comfort 
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Photo By Twilight Invasion 

Or worse... 
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Consider a moving ground vehicle 

State	update	 State	update	 State	update	 State	update	
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When computing a control decision… 

State	update	 State	update	 State	update	 State	update	

Control	input	
Calcs.	complete	

Control	input	
Calcs.	complete	

Control	input	
Calcs.	complete	

Deadline	 Missed	



Obstacl
e	
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What if an obstacle moves while we compute? 

Goa
l	

This	is	a	mo/va/ng	anima/on,	not	a	kinema/c	simula/on.	

State	update	 State	update	

Control	input	
Calcs.	complete	

Control	input	
Calcs.	complete	

Obvious	design	goal:	Reduce	the	period	for	state	update/control	input	as	much	as	possible.		
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Model-Predictive Control: Plan Trajectories at Runtime 

Obstacl
e	

Goa
l	
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Model-Predictive Control: Plan Trajectories at Runtime 

Obstacl
e	

Goa
l	
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Model-Predictive Control: Plan Trajectories at Runtime 

Obstacl
e	

Goa
l	
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Model-Predictive Control: Plan Trajectories at Runtime 

Obstacl
e	

Goa
l	

Small	margin	
for	error	
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Easy…I’ll use an accurate vehicle model to predict the 
trajectory and avoid the obstacle. 

Obstacl
e	

Goa
l	

Takes	longer	to	compute	control	inputs	



15	

Easy…I’ll pick a simpler vehicle model to make it 
more likely to return control inputs in time 

Obstacl
e	

That	control	input	does	not	mean	what	
you	think	it	means.	
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Competing constraints 

High	vehicle	speed:	cannot	tolerate	slow	return	/me.		

Low	accuracy	model:	cannot	accurately	predict	all	maneuvers.		

High	accuracy	model:	takes	longer	to	op/mize.		

Obstacl
e	
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Goal: Computationally-Aware CPS 

1. Consider	the	/me	required	to	perform	
the	computa/on.	

2.  Switch	between	controllers	using	
accuracy	and	/me	as	switching	criteria.	

3.  Explore	condi/ons	for	stability	and	
convergence.	
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Problems: MPC return time 

•  A complex model may 
introduce predictive accuracy,  

•  however, this increases the 
computational burden. 

•  Especially under high speed, 
the system cannot tolerate a 
slow return rate. 
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Problems: control accuracy 

•  The return time problem can 
be addressed via model 
reduction,  

•  potential drawback is 
higher model mismatch.  

•  Model mismatch can also 
introduce problems.   

•  Wrong prediction 
•  Infeasible trajectories 
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Model Predictive Control 
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Problem Modeling 
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Problem Statement 
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Kinematic/Dynamical Models 
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Hybrid MPC Design 
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Hybrid MPC Design 

To	make	this	decision,	we	need	to	know	two	things:	
(1)	Model	mismatch	 (2)	Return	8me	for	MPC	for	this	model	
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Model Mismatch & Return Time 

•    
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Model Mismatch 
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Model Mismatch 



30	

Time to return 
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Uncontrollable divergence 
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Uncontrollable divergence: DMPC 

(DMPC	value)	
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Uncontrollable divergence: KMPC 

(KMPC	value…)	
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Uncontrollable divergence: KMPC with large steering 

(KMPC	value…)	
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Fortunate Previous Result from [1] 
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Take the fit data and utilize linearization techniques 
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Scatter plot with comfort controller 
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Simulation 
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Safe	

R.I.P.	
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Hybrid MPC Design 
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Hybrid MPC Design 
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Simulation Results 
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Simulation Result 

•    
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Simulation Result 

•    
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What about lots of obstacles? 
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Simulation Result 

•    
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Simulation Result 

•    
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What if I don’t have a car? 

Unswitched	

Switched	
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Application of switching MPC 
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Application to Quadrotor Obstacle Avoidance 



CACPS Current efforts: Design with time-awareness 

1.	Overcoming	8me-awareness	challenges	
	
➢  Ensure	/meliness	for	cri/cal	applica/ons	
➢  Reliability	for	verifica/on	and	composi/on	
	
	
	
	
	

Approach

1.   Knowledge	of	
computa/onal	
components	/me	
performance	

2.   Design	to	achieve	
computa/onal	
constrains	

3.   Self	adapta8on	to	
computa/onal	load,	
by	trading	accuracy	
with	specifica/on	
through	an	hybrid	
approach.	

Obstacle	

Goal	

Planned	

Obstacle	
Goal	

Executed	

Percep8on	8me,		
Computa8on	8me	lag	

51	



CACPS Current efforts: Design with time-awareness 

2.	Quan8fying	computa8onal	burden	
	
➢ Quan8fying	8me	performance	
	
▪  Hardware:	system’s	architecture	
▪  Sokware	
▪  Network	induced	

➢  Approach	
	
		

Network		

WCET	/	WCRT	

52	



CACPS Current efforts: Design with time-awareness 

2.	Quan8fying	computa8onal	burden	
	
➢ Quan8fying	8me	performance	
	
▪  Characterizing	return	/me	and	defining	boundaries	for	algorithms	
	
	
	
	
	
	
	
	
	
	

➢  Reac8ve	and	8me-adap8ve	controller	design	
	 	Incorpora/ng	/me	characteriza/on	in	the	design	process	
	
		 53	



3.	Predic8ve	control	that	is	robust	to	computa8on	8me	uncertainty	
	
➢  Computa8on	8me												is	uncertain	due	to	
▪  Hardware	variability	
▪  Delays	and	data	losses	
▪  Computa/onal	complexity	

➢  Approach	
	
		

Hybrid	system	modeling	
At	sampling	instants,															is	updated	via	the	difference	inclusion:	
	
	
	
while	in	between	sampling	events,	it	decreases	to	zero	linearly.	
	
	
	
	
	
Design	control	algorithm	to	compensate	for	all	possible	values	of		

CACPS Current efforts: CA Predictive Control for CPS 

54	
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Accomplishments during first year of performance 
and ongoing efforts 

Summary	of	milestones	reached	(first	period	of	performance):	

•  Formula8on	of	model	of	computa8onally-aware	CPS	(CACPS)	

•  Deriva8on	of	uncertainty	divergence	(UD)	

•  Applica8on	to	ground	and	aerial	vehicle	applica8ons	

Ongoing	efforts:	

•  Overcoming	8me-awareness	challenges		

•  Quan8fying	computa8onal	burden	

•  Predic8ve	control	that	is	robust	to	computa8on	8me	uncertainty	
CACPS	Student		

Team:	

Berk	Al/n	
(postdoc,	UCSC)	

Nathalie	Risso	
(grad,	UofA)	

Yegeta	Zeleke	
(grad,	UCSC)	

+  2	Undergrad	students	
+  2	High	School	inters	
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UAVs	in	the	Na/onal	Air	Space		
(courtesy	NASA)	

Self-driving	Cars	

CPS:	Synergy:	Collabora8ve	Research	
Computa8onally	Aware	Cyber-Physical	Systems	

Ricardo	Sanfelice	(UC	Santa	Cruz	NSF	1544396)	,	Jonathan	Sprinkle	(University	of	Arizona,	NSF	1544395)	

Scien8fic	Impact:		
• 	More	specific	controllers	
made	available,	based	on	
available	computa/on	power	

• 	Increased	confidence	in	
run/me	controller,	if	switched		

Solu8on:		
• 	Metric	for	switching	criteria	

• 	Basis	in	accumulated	error	
for	predic/ve	controller	

• 	Hybrid	control	approach	
• 	Trade	off	between	/me	to	
compute	and	accuracy	

Challenge:		
• 	Include	computa/on	/me	
informa/on	at	run/me	as	
part	of	the	controller’s	
design	for	switching	criteria	

• 	Do	not	give	up	accuracy	to	
improve	computa/on	/me	 Broader	Impact:		

• 	Less	conserva/ve	controllers	
mean	closer	flight	paUerns	

• 	Benefits	to	ground	and	
aerial	vehicle	control	
systems	

• 	Applica/ons	to	
undergraduate	team	test	
beds	

• 	~20%	reduc/on	in	average	
return	/me	for	dynamical	
models	without	
compromising	stability	

logic	based	on		
computa8on	8me	
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Thank you for your attention! 
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Back up slides 
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Sufficient conditions for asymptotically ultimately 
bounded 

A system is asymptotically ultimately bounded 
if the system evolves asymptotically to a 
bounded set, i.e., there are positive constants b 
and c, and for every 0<a<c, there is a time K 
such that 

Why consider boundedness? 
(1) Minimizing UD does not automatically ensure stability. 
(2) An overall system consisting of stable subsystems is not necessarily stable. 

These sufficient conditions are switching constraints. 
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Long horizon examples 

N=36	 N=540	

This	permits	the	use	of	a	“dwell-/me”	approach	to	determina/on	of	stability.	
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It doesn’t always work. 

remove the last term 

linearized around 0 

linearized around 0, but multiplied by rho 
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Each model converges 

Numerical results of the superlevel sets of all three models suggest that each of these three 
MPCs can bound the aircraft to the origin, or at least a small ball containing the origin with a 
radius smaller than the discrete spatial steps. 
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Make model-3 less accurate 
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For rho=0.5, and d=1 

The boundary is not found even when the 
state reaches x=30 m and y=30 m. 

The boundary is not found even when 
the state reaches x=30 m and y=30 m. 

In this situation, the models do not satisfy the necessary conditions in order to use the 
uncontrollable divergence as the switching metric. It confirms that the approach requires 
some analysis in order to use the design methodology with confidence. 



Return time 
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Switching	MPC	
	
Find	a	rule																					to	switch	between	predic/on	models	fq,	with		respect	to	a	
safety-accuracy		trade-off.	

Func/ons	fq 	(x,	u),	q	=	0,	1,	.	.	.	,	N	of	varying	fidelity.	

CACPS Current efforts: Real Time Predictive Control 
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												is	the	minimizer	of	

	

	
	

with	ini/al	condi/on								.	

Basic	model	with	measurement	state								and	/mer						:	

Hybrid Model of RHC 
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Closed	loop	state:	

Difference	inclusion	model	with:	

	
	

The	set	valued		map			 	 	 	allows	
	
➢  	 intermiUent	sampling	(due	to	delays,	losses	etc.),		and	
➢  	 varying	horizons	for	flexible	control	to	compensate	 .	
	
Stable	provided									is	a	control	Lyapunov		 funcLon!	

Current Work: RHC with varying Horizons 


