
We’re making robot teams better at 
coordinating by using real-time simulation 

to pick between a handful of simple 
strategies.

NRI: FND: Connected and Continuous Multi-
Policy Decision Making

Key Problem -  Our goal is to develop robot that exhibit robust behaviors under a 
wide range of conditions where rule-based approaches to specifying behavior are 
too brittle.


In this project, we’re currently focusing on multi-robot coordination, including 
how robots pick their own behavior in order to maximize the team performance, 
and how/when they communicate with each other. The space of potential plans 
for a team of robots can be very large, and evaluating the quality of any given 
plan is very computationally costly due to the need to marginalize over 
uncertainty.


Solution -  Our approach is based on Multi-Policy Decision Making (MPDM), in 
which the performance of a set of candidate policies is estimated online using a 
simulator; the policy with the best expected performance is “elected” to control 
the robot. This election cycle is repeated, allowing the robots to produce effective 
behavior by dynamically switching between simple polices that often perform 
poorly on their own. 


A major advantage of this approach is that it is often possible to write policies 
that are simple and effective in at least some situations. Those simple strategies 
can encode long-horizon planning— far longer than can be achieved with a 
forward search. And critically, because the MPDM framework itself will pick the 
most effective policy for the given situation, it is not necessary for policies to be 
general-purpose. As a consequence, policies can be very simple— they can be 
designed to handle a particular situation well, and allowed to be lousy in other 
situations.


Problem Domain - A representative domain is “tag”— where a team of robots is 
attempting to capture an adversarial human. The position of the human can only 
be detected at short range, and robots can only learn about the location or 
policies of their teammates through unreliable communications. An example of a 
simple policy is for all the robots to converge upon a particular location (which 
can be effective in cornering the human). Another simple policy might be for the 
robots to explore the environment— which can result in either observing the 
location of the human or, at least, ruling out some locations for the human. Both 
of these policies reflect relatively well-coordinated, long-horizon plans. Neither is 
likely to be effective in capturing an adversarial human alone, but it is easy to 
imagine that some interleaving of these strategies (e.g. explore until you have a 
reasonable belief about where the human is, then have all robots converge upon 
that location) could be effective. The problem is determining how and when to 
switch between these policies— the best choices would likely depend on both 
the robots’ belief states and the structure of the environment, making a rule-
based system difficult to develop. With MPDM, the robots use online simulations 
to sample possible outcomes of each policy, and elect the policy with the largest 
expected reward.


New Contributions - We extend this MPDM framework to multi-robot teams, 
coordinating over unreliable radio links. We propose a “implicit consensus” 
approach, in which each robot’s simulator assumes that all robot team-members 
use the same policy. When communications are working well, robots’ belief 
states are also synchronized, so they all compute the same plan— which results 
in an implicit consensus. However, when communication drop outs result in 
divergence of belief states, robots may elect different policies according to their 
beliefs. A key advantage of this approach is that the robot team’s performance 
degrades gracefully as communication degrades, and the team never halts due to 
a communication drop out. 

Scientific Impacts- The techniques developed in this project are broadly 
applicable to planning problems where uncertainty or a large search space are 
obstacles to producing good behavior. 


Broader Impacts - This work has broad applications to autonomous robots and 
vehicles, from cars, to in-home robots, to the factory floor. In addition to directly 
supporting one PhD student, this project indirectly supports a second PhD 
student and two undergraduate students.  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Prescribing what a robot should do in every 
scenario isn’t scalable. We “try out” a number 
of simple strategies in a simulator; the strategy 
with the highest expected reward is “elected”, 

and controls the robot.


• You don’t even have to know why the 
strategy works.


• The dynamically chosen strategy often 
works better than any single strategy.

We’re focusing on teams of robots  
playing tag with a human. Long-horizon plans 
are needed to be successful, but large search 
space and uncertainty make it computationally 

difficult.


• Very low (and uncertain) communications 
budget.


• Good strategies are very sensitive to the 
shape of the environment and the behavior 

of the human
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