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Cyber-physical power grid
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Research objectives and methodologies

Control-theoretic modeling of attack/defense:

I modeling and implementability of attacks
I centralized and localized attack/defense

Detection and classification monitors:

I detectability/identifiability in stochastic systems
I distributed vs centralized detection

Adaptive defense mechanisms:

I online topology modification to limit attack
I system redesign based on available resources

Experimental validation:

I Synthesis of attacks/monitors via RTDS/PSCAD

This material is based upon work supported by NSF Award
ECCS-1405330.

Year 0: attacks in deterministic models
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(c) Topology change attack
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(d) Replay attack

Attack detectability⇔ distinguishable from
measurements from a normal operating condition:

y(x1, 0, t) 6≡ y(x2, u, t)

Attack detectability⇔ distinguishable from
measurements from other attacks:

y(x1, u1, t) 6≡ y(x2, u2, t)

Fundamental detectability/identifiability limitations
Attacks remain undetected/unidentified iff they ex-
cite only the zero dynamics of the attacked system
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I centralized/distributed detection algorithms
I geometric design of optimal attacks
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Year 1: security in stochastic control systems
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I if attack undetected, controller implements Kalman
filter with wrong data→ performance degradation

I perf. degradation as induced error covariance
Iε-stealthiness via performance of any detector

Conditions for ε-stealthiness
An attack is ε-stealthy only if

lim sup
k→∞

KLD(ỹk
1 ||y

k
1 ) ≤ ε,

I yk
1 measurements expected if no attack,

I ỹk
1 received measurements.

I sufficiency under ergodicity assumption
I performance bounds and limitations

Year 1: network observability radius

Modify network edges to prevent observability:

min ‖∆‖F

s.t. (A + ∆)x = λx (eigenvalue constraint)

‖x‖2 = 1 (eigenvector constraint)

COx = 0 (unobservability)

∆ ∈ AH (structural constraint)

I optimality conditions via total least squares
I analytic bounds and algorithms
I resilience of networks with random weights
I topology vulnerabilities of IEEE14

Year 1: distributed identification
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Subsystem 3

I cooperation + unknown input observers
I complexity vs identification accuracy
I limitations of convexity reduction methods

Year 1: dynamic load altering attacks
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Over−Frequency Relay Tripping  

I tamper with a group of loads (positive feedback)
I demand response and demand management
I open/closed loop, dynamic, single/coordinated
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