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MOTIVATION

Introducing randomness into the behavior of a system can enhance variety, robust-
ness, or unpredictability. Some examples:

e Protocol fuzz testing: We want to generate many different packet
sequences, while conforming to the protocol (perhaps only most of the time).

e Exploration: A robot moving in an unknown environment can use
randomness to increase coverage of the space or reduce exploration bias.

e Robotic surveillance: Using a random patrol route makes the robot's
future location harder to predict.

However, adding randomness should not compromise safety and correctness. Control
Improvisation (Cl) is a framework for synthesizing randomized systems with formal
guarantees. Here, we study two applications of Cl to cyber-physical systems:

e Randomized robotic planning in an adversarial environment;

¢ Generating synthetic data to test or train an autonomous car.
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REACTIVE CONTROL IMPROVISATION

To enable randomized planning in an adversarial environment, we defined a reactive
version of control improvisation.

In RCI, the system ¢ and environment (adversary) 7 alternate picking symbols from
a finite alphabet 3, building up a word of length n. Let P, (w) be the probability
of obtaining the word w.

An improvisation is any word w € X" satisfying a hard constraint 7, and [ is the set
of all such words. An improvisation is admissible if it also satisfies a soft constraint
S, and A is the set of all admissible improvisations.

Given an RCl instance C = (H,S,n, €, p) with e € [0,1] and p € (0, 1], a strategy
o is an improvising strategy if for every adversary T:

e P, (I)=1
e P, (A)>1—¢
e Vwel, P,.(w)<p

(hard constraint always satisfied)
(soft constraint usually satisfied)
(sufficient randomness)

If there is an improvising strategy, C is feasible, an improviser for C is a probabilistic
algorithm implementing an improvising strategy.
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REACHABILITY GAME EXAMPLE

square = adversary-controlled state
doubled = goal for hard constraint

shaded = goal for soft constraint L >@

With € = p = 1/2, this is feasible. —1 50 @

An improviser: @
® r — a,c with equal probability

Whatever the adversary does, we always reach a doubled state, we reach a shaded
state with at least probability 1/2, and no single path has more than probability 1/2.

e y — c,d with equal probability
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IMPROVISER CONSTRUCTION

We show how to construct improvisers by doing
a random walk weighted by the number of ways
to satisfy the hard and soft constraints.

For example, moving to x and y with
probabilities 1/4 and 3/4 we can achieve
p=1/4and e =2/3.

For reachability and safety games, our
construction can be implemented efficiently.
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(5k images) Precision ~ Recall ~ Precision Recall
100% generic 72.9 37.1 62.8 65.7
95% generic, 5% overlapping 73.1 37.0 68.9 67.3

Including the overlapping images dramatically improves performance on such images,
without hurting (and in fact improving!) performance on generic images.

[1] Johnson-Roberson et al., Driving in the Matrix, ICRA 2017.

THE SCENIC SCENARIO DESCRIPTION LANGUAGE

SCENIC is a probabilistic programming language defining distributions over scenes,
which are configurations of physical objects. For example, here is a SCENIC scenario
describing a badly-parked car, with 3 scenes generated from it:

from gta import Car, curb, roadDirection

ego = Car

spot = OrientedPoint on visible curb

Uniform(1.0, -1.0) x (10, 20) deg
(spot offset by -0.5 @ 0),

badAngle relative to roadDirection

badAngle
Car

With SCENIC, far more complex scenarios can be described easily. Two examples:

5-car platoon (10 lines of SCENIC): Bumper-to-bumper traffic (25 lines):
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RANDOMIZED ROBOTIC PLANNING
We used our RCI algorithm to
synthesize a planner for a surveillance
drone (black) that visits the 4 circled
locations while avoiding collisions
with another, potentially adversarial
drone (blue). We imposed a soft
constraint saying that 3/4 of the
time, the drone should not
redundantly visit one of the circles.
At right, 4 runs against the same
adversary illustrate the randomness
of the controller.
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GENERATING SYNTHETIC DATA

e Collecting, preparing, and labeling real-world data is slow and expensive;
furthermore, it can be hard to observe corner cases that are rare but necessary
to test against (e.g. a car accident).

e Synthetically generated data can be produced in bulk with correct labels.

e However, generating meaningful data is difficult since the input space of ML
systems is often large and unstructured. Images of 12 cars placed randomly
on a road, facing random directions are not very useful.

e \We want scenes that are interesting for testing or training purposes.

e Inspired by Cl, we propose to guide data generation with hard and soft
constraints encoded in a domain-specific programming language, SCENIC.
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P F i S -
The configurations generated by SCENIC can be fed into a simulator to produce
images, LiDAR data, etc. For our experiments we used Grand Theft Auto V to
render images for a car detector neural network.
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TRAINING ON HARD CASES
A difficult case for car detection is when two cars overlap in the image. We can
generate such scenes using SCENIC:
from gta import Car
ego = Car roadDeviation (-10, 10) deg
c = Car ,
roadDeviation (-10, 10) deg

leftRight = Uniform(1.0, -1.0) * (1.25, 2.75)
Car C leftRight @ (4, 10),

roadDeviation (-10, 10) deg
We can significantly improve the performance obtained using a state-of-the-art
dataset [1] (synthesized with the same simulator) by mixing in these difficult im-
ages, keeping the total size of the training set fixed:

Training Data Generic Test Set Overlapping Test Set
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(FENERALIZING A KNOWN FAILURE

We can use SCENIC to reproduce a known failure case, then generalize it for testing
or retraining. Here, the neural network misclassifies one car as three:

from gta import Car, EgoCar, CarModel, CarColor

param time = 12 *x 60 # noon
param weather = 'EXTRASUNNY'

-628.8 @ -540.6,
-359.2 deg

ego = EgoCar

Car -625.4 @ -530.8,
8.3 deg,
model CarModel.models['DOMINATOR'],

color CarColor.byteToReal([187, 162, 157]) /

We can generalize this scenario in different directions to discover what features con-
tributed to the misclassification. Here are images generated from 3 different gener-
alizations:

Add noise: Change car model:

Change global position:
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We can then write a more general scenario that captures the cause of the failure,
retraining the network without overfitting to the original image.
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EXPLORING SYSTEM PERFORMANCE

SCENIC can be used to write specialized test sets to evaluate system per-
formance under different conditions. For example, four cars in good or bad
lighting and weather:
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FUTURE WORK
Theory of Control Improvisation:
e RCI over unbounded or infinite words, for robotic planning;

® More complex randomness constraints — e.g. bounds on entropy —
directly controlling diversity or unpredictability;

e Control improvisation over continuous signals, for test generation.

Extensions of Scenic:

e encoding dynamics to generate videos instead of static scenes;

e describing 3D scenes;

e allowing users to extend the language by defining custom specifiers;

interfacing SCENIC to other simulators, e.g. CARLA.
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CONCLUSIONS

Reactive Control Improvisation is a framework for synthesizing systems
with random but controlled behavior.

We showed RCI problems can be efficiently solved in many practical
cases, and used it to synthesize a planner for a surveillance drone.

SCENIC is a probabilistic programming language for specifying
distributions over configurations of physical objects.

SCENIC can generate synthetic data useful for analyzing ML-based
perception systems:

® creating specialized test sets to explore system performance;
® improving training effectiveness by emphasizing difficult cases;

e generalizing from individual failure cases to discover the cause of the
failure and to construct broader scenarios suitable for retraining.
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