
Control Improvisation for Cyber-Physical Systems
Daniel J. Fremont, Xiangyu Yue, Tommaso Dreossi, Shromona Ghosh,

Alberto L. Sangiovanni-Vincentelli, Sanjit A. Seshia
University of California, Berkeley

Motivation
Introducing randomness into the behavior of a system can enhance variety, robust-
ness, or unpredictability. Some examples:
• Protocol fuzz testing: We want to generate many different packet

sequences, while conforming to the protocol (perhaps only most of the time).
• Exploration: A robot moving in an unknown environment can use

randomness to increase coverage of the space or reduce exploration bias.
• Robotic surveillance: Using a random patrol route makes the robot’s

future location harder to predict.
However, adding randomness should not compromise safety and correctness. Control
Improvisation (CI) is a framework for synthesizing randomized systems with formal
guarantees. Here, we study two applications of CI to cyber-physical systems:
• Randomized robotic planning in an adversarial environment;
• Generating synthetic data to test or train an autonomous car.

Reactive Control Improvisation
To enable randomized planning in an adversarial environment, we defined a reactive
version of control improvisation.
In RCI, the system σ and environment (adversary) τ alternate picking symbols from
a finite alphabet Σ, building up a word of length n. Let Pσ,τ(w) be the probability
of obtaining the word w.
An improvisation is any word w ∈ Σn satisfying a hard constraint H, and I is the set
of all such words. An improvisation is admissible if it also satisfies a soft constraint
S, and A is the set of all admissible improvisations.
Given an RCI instance C = (H,S, n, ε, ρ) with ε ∈ [0, 1] and ρ ∈ (0, 1], a strategy
σ is an improvising strategy if for every adversary τ :

• Pσ,τ(I) = 1 (hard constraint always satisfied)
• Pσ,τ(A) ≥ 1− ε (soft constraint usually satisfied)
• ∀w ∈ I, Pσ,τ(w) ≤ ρ (sufficient randomness)

If there is an improvising strategy, C is feasible; an improviser for C is a probabilistic
algorithm implementing an improvising strategy.

Reachability Game Example
square = adversary-controlled state
doubled = goal for hard constraint
shaded = goal for soft constraint

With ε = ρ = 1/2, this is feasible.
An improviser:
• x→ a, c with equal probability
• y → c, d with equal probability

s0

x

y

a

e

c

d

b

Whatever the adversary does, we always reach a doubled state, we reach a shaded
state with at least probability 1/2, and no single path has more than probability 1/2.

Improviser Construction
We show how to construct improvisers by doing
a random walk weighted by the number of ways
to satisfy the hard and soft constraints.
For example, moving to x and y with
probabilities 1/4 and 3/4 we can achieve
ρ = 1/4 and ε = 2/3.
For reachability and safety games, our
construction can be implemented efficiently.

s0

4,2

x

1,1

y

3,1

1,1

1,0

1,1

1,0

Randomized Robotic Planning

We used our RCI algorithm to
synthesize a planner for a surveillance
drone (black) that visits the 4 circled
locations while avoiding collisions
with another, potentially adversarial
drone (blue). We imposed a soft
constraint saying that 3/4 of the
time, the drone should not
redundantly visit one of the circles.
At right, 4 runs against the same
adversary illustrate the randomness
of the controller.

Generating Synthetic Data
• Collecting, preparing, and labeling real-world data is slow and expensive;

furthermore, it can be hard to observe corner cases that are rare but necessary
to test against (e.g. a car accident).

• Synthetically generated data can be produced in bulk with correct labels.

• However, generating meaningful data is difficult since the input space of ML
systems is often large and unstructured. Images of 12 cars placed randomly
on a road, facing random directions are not very useful.

• We want scenes that are interesting for testing or training purposes.

• Inspired by CI, we propose to guide data generation with hard and soft
constraints encoded in a domain-specific programming language, Scenic.

The Scenic Scenario Description Language
Scenic is a probabilistic programming language defining distributions over scenes,
which are configurations of physical objects. For example, here is a Scenic scenario
describing a badly-parked car, with 3 scenes generated from it:

With Scenic, far more complex scenarios can be described easily. Two examples:
5-car platoon (10 lines of Scenic): Bumper-to-bumper traffic (25 lines):

The configurations generated by Scenic can be fed into a simulator to produce
images, LiDAR data, etc. For our experiments we used Grand Theft Auto V to
render images for a car detector neural network.

Training on Hard Cases
A difficult case for car detection is when two cars overlap in the image. We can
generate such scenes using Scenic:

We can significantly improve the performance obtained using a state-of-the-art
dataset [1] (synthesized with the same simulator) by mixing in these difficult im-
ages, keeping the total size of the training set fixed:

Training Data Generic Test Set Overlapping Test Set
(5k images) Precision Recall Precision Recall
100% generic 72.9 37.1 62.8 65.7

95% generic, 5% overlapping 73.1 37.0 68.9 67.3

Including the overlapping images dramatically improves performance on such images,
without hurting (and in fact improving!) performance on generic images.
[1] Johnson-Roberson et al., Driving in the Matrix, ICRA 2017.

Generalizing a Known Failure
We can use Scenic to reproduce a known failure case, then generalize it for testing
or retraining. Here, the neural network misclassifies one car as three:

We can generalize this scenario in different directions to discover what features con-
tributed to the misclassification. Here are images generated from 3 different gener-
alizations:

Add noise: Change car model: Change global position:

We can then write a more general scenario that captures the cause of the failure,
retraining the network without overfitting to the original image.

Exploring System Performance
Scenic can be used to write specialized test sets to evaluate system per-
formance under different conditions. For example, four cars in good or bad
lighting and weather:

Future Work
Theory of Control Improvisation:
• RCI over unbounded or infinite words, for robotic planning;
• More complex randomness constraints — e.g. bounds on entropy —

directly controlling diversity or unpredictability;
• Control improvisation over continuous signals, for test generation.

Extensions of Scenic:
• encoding dynamics to generate videos instead of static scenes;
• describing 3D scenes;
• allowing users to extend the language by defining custom specifiers;
• interfacing Scenic to other simulators, e.g. CARLA.

Conclusions
• Reactive Control Improvisation is a framework for synthesizing systems

with random but controlled behavior.

• We showed RCI problems can be efficiently solved in many practical
cases, and used it to synthesize a planner for a surveillance drone.

• Scenic is a probabilistic programming language for specifying
distributions over configurations of physical objects.

• Scenic can generate synthetic data useful for analyzing ML-based
perception systems:
• creating specialized test sets to explore system performance;
• improving training effectiveness by emphasizing difficult cases;
• generalizing from individual failure cases to discover the cause of the

failure and to construct broader scenarios suitable for retraining.

Bibliography and Acknowledgements
Fremont and Seshia, Reactive Control Improvisation. CAV 2018.
Fremont et al., Scenic: A Language for Scenario Specification and Scene
Generation. PLDI 2019.
This work is supported in part by the National Science Foundation Graduate
Research Fellowship Program under Grant No. DGE-1106400, NSF grants
CNS-1646208, CCF-1139138, and CNS-1739816, DARPA under agreement
number FA8750-16-C0043, the DARPA Assured Autonomy program, and Ter-
raSwarm, one of six centers of STARnet, a Semiconductor Research Corpo-
ration program sponsored by MARCO and DARPA.

CNS-1646208


