

Control of traffic composed of humans and automated vehicles

Dan Work

Associate Professor
Civil \& Environmental Engineering
Electrical Engineering \& Computer Science Institute for Software Integrated Systems

Vanderbilt University

Joint work with:

Rafi Stern (TU Munich; Minnesota FA19), Maria Laura Delle Monache (Inria Grenoble), Benedetto Piccoli (Rutgers), Benni Seibold (Temple), Roman Lysecky \& Jonathan Sprinkle (Arizona)

Will automated vehicles increase travel demand?

Probably.

Chauffer Experiment

- Give people a chauffer and see what happens
- Overall: 76\% more miles traveled and longer trips

- Retirees: $3 x$ increase in evening driving $2 x$ longer trips.
- Millennials: $3 / 4$ of cohort increased miles.
- 20\% "ghost trips" (e.g., to pick up children, friends)

Can autonomous cars improve roadway capacity?

YES.

Automated Highways

- Need cars that talk, coordinate, and drive with high speeds and small gaps
- Up to 2-3x freeway capacity increase (in ideal conditions)

KTH Truck platoons

- Main idea. Move people/goods close comp/NiON together at high speeds

- Assume cars of length L follow with a space gap of Δx
- The spacing is: $s=\Delta x+L$
- The density of traffic is: $\rho=1 / s$. Density is typically measured in veh/mi or veh/km.
- The speed of each vehicle is v.
- The flow of traffic is: $q=\rho v$, or equivalently: ${ }^{q=\frac{v}{\Delta x+L}}$

How to determine road capacity for platoons?

- The flow of traffic is: $q=\rho v$, or equivalently $q=\frac{v}{\Delta x+L}$
- Flow is measured in veh/hr (e.g., 2,000 veh/hr/lane)
- The maximum possible flow is called the capacity
- We can increase the flow by increasing the speed or reducing the space gap.
- Speed and spacing are typically related.

Consequently flow and spacing are related too:

CARPOOL. Another way to move people together at high speeds
$2 x$ freeway capacity

MORE VIDEOS

CARPOOL. Another way to move people together at high speeds

vanderbilt

[The Late Late Show With James Corden] 10

72 people (bike)

72 people (car)

72 people (bus)

What to expect from a small number of autonomous vehicles (AVs)

- A few AVs will not eliminate traffic congestion
- As long as demand exceeds supply...

What to expect from a small number of autonomous vehicles (AVs)

- AVs might not eliminate traffic congestion
- As long as demand exceeds supply...

Science

SHARE

Roundabout Too mary cars equas a trame jam, even mithout menternu cave.
Traffic Jams Happen, Get Used to It
By Dennis Normile | Mar. $28.2008 .12: 00 \mathrm{AM}$

Phantom traffic jams: result of unstable traffic

Small variations are amplified by the vehicle behind

Small variations are dampened by the vehicle behind

Experiments with only a single AV

- Temperature: 107 F
- 25 vehicles
U. of Arizona CAT Vehicle
- 30 drivers

- 280 bottles of water
- 15 cans of sun screen

Dissipation of stop-and-go traffic waves via control of a single autonomous vehicle

I L L I N O I S
unvensiry or illinos at unbana Ciamenon
RUTGERS
TEMPLE UNIVERSITY

THE UNIVERSITY
of ARIZONA.

Special thanks to the research and logistics team: Rafi Stern, Shumo Cui, Maria Laura Delle Monache, Rahul Bhadani, Matt Bunting, Miles
Churchill, Nathaniel Hamilton, R'mani Haulcy, Hannah Pohlmann, Fangyu Wu, Benedetto Piccoli, Benni Seibold, and Jonathan Sprinkle (co-PIs)

How do adaptive cruise control systems

 work?

- The follower vehicle accelerates/decelerates according to:
- Where Δv is the lead vehicle velocity minus the follower vehicle velocity, \dot{x}; τ is the desired following time (e.g., in seconds), and k_{1}, k_{2} are additional parameters

When will the ACC system create phantom jams?
 vanderbilt

$$
\underset{\text { Acceleration }}{\underset{x}{x}=k_{1}(\Delta x-\tau \dot{x})+k_{2} \Delta v}
$$

- Jams occur when the parameters are chosen such that

$$
\frac{k_{1}}{\left(k_{1} \tau\right)^{3}}\left(\frac{\left(k_{1} \tau\right)^{2}}{2}+k_{2} k_{1} \tau-k_{1}\right)<0
$$

- Goal: observe behavior or ACC vehicle as a function of the input signal from the lead vehicle in an experiment
- Experimental setup:
- Drive lead vehicle with specified trajectory
- Measure reaction of following vehicle when ACC engaged

Candidate vehicles

- Need to test broad range of vehicles
- Selected seven vehicles from two manufactures to cover range of size and vehicle class

Vehicle A

Vehicle C

Vehicle F

Vehicle B

Vehicle D

Vehicle G

- Need high accuracy position and speed measurements
- Use GPS to track position throughout experiment
- 0.43 m ave. relative position error and $0.06 \mathrm{~m} / \mathrm{s}$ speed error (0.2 mph)

- Broad range of vehicles tested
- All tested vehicles are string unstable under both settings considered

Vehicle E

Vehicle A

Vehicle B

Vehicle D

- Collect data from a platoon of ACC vehicles to check validity of calibrated model

ADAPTIVE CRUISE CONTROL PLATOON TESTS

THIS WORK SUPPORTED BY THE NATIONAL SCIENCE FOUNDATION PROJECT
"CONTROL OF VEHICULAR TRAFFIC FLOW VIA LOW DENSITY AUTONOMOUS VEHICLES" UNDER AWARDS CNS-1446435, 1446690, 1446702, 1446715.
[Gunter, Gloudemans, Stern, McQuade, Bhadani, Bunting, Delle Monache, Lysecky, Seibold, Sprinkle, Benedetto, Work, 2019]

- Lead vehicle at 50 mph and rapidly decelerates to 44 mph

Validation of string unstable ACC platoons

- Lead vehicle at 50 mph and rapidly decelerates to 44 mph
- Following vehicles use ACC to follow in a platoon

- Lead vehicle at 50 mph and rapidly decelerates to 44 mph
- Following vehicles use ACC to follow in a platoon

Validation of string unstable ACC platoons

- Lead vehicle at 50 mph and rapidly decelerates to 44 mph
- Following vehicles use ACC to follow in a platoon

- Lead vehicle at 50 mph and rapidly decelerates to 44 mph
- Following vehicles use ACC to follow in a platoon

Validation of string unstable ACC platoons

- Lead vehicle at 50 mph and rapidly decelerates to 44 mph
- Following vehicles use ACC to follow in a platoon

Validation of string unstable ACC platoons

- Lead vehicle at 50 mph and rapidly decelerates to 44 mph
- Following vehicles use ACC to follow in a platoon

Validation of string unstable ACC platoons

- Lead vehicle at 50 mph and rapidly decelerates to 44 mph
- Following vehicles use ACC to follow in a platoon

It is clear that all adaptive cruise control systems are created equal...

And they may outperform humans...

- Self driving cars won't solve all of our mobility problems
- But CAVs at moderate penetration rates can help smooth flow - experimentally demonstrated.
- Current autonomous vehicle systems have widely varying qualities, from a traffic perspective.

Control of traffic composed of humans - and automated vehicles

*

Dan Work

Associate Professor
Civil \& Environmental Engineering
Electrical Engineering \& Computer Science
Institute for Software Integrated Systems
Vanderbilt University

High performance electric vehicle platoon

High performance electric vehicle platoon

