Cooperative Robotic Systems for Precision Agriculture and Plant Health Management

Introduction \& Motivation

- Aerial and ground robotics for plant-centric crop management
- Multi-modal and multi-resolution, 2D/3D approach on Nitrogen (N), Potassium (K), and Sulfur (S) deficiency detection and biomass assessment.
- Automated and optimized fertilizer recommendation reflecting spatiotemporal crop needs and enabling reduced environmental impact.
- Extensive field testing in multiple corn test sites especially in Minnesota.
- Major impact in improved yield, superior product quality, and environmental protection. Generalizability across crops.z

Multi-modal 3D Reconstruction

- Aerial and ground robot sensor fusion for single map representation for N/K/S deficiency detection.
- 3D model-based assessment of crop phenological characteristics.
- Current reconstruction and separation pipeline achieves mloU of over 90\%
- Proposed pipeline for optimizing images taken by aerial robot for plant reconstruction.

Plant Characterization and Nutrient Deficiency Detection

- N/K/S deficiency assessment on RGB through automated classification with custom features.
- Hyperspectral imaging for N/K/S deficiency identification
- Multi-modal sensor fusion for enhanced and unified N/K/S deficiency detection.
- Multi-resolution approach working across spatio-temporal scales.

Robotized Precision Agriculture

Predicted LN Plant S Uptake

- Autonomous path planning to locally cover the crop area and globally ensure auto-homing and full area coverage over 3D morphologies.
- Multi-spectra image alignment and map projection.
- Multi-modal sensor fusion for onboard localization and mapping. - Visual/NIR/LiDAR \& GPU/IMU fusion for dense map reconstruction
- Autonomous plant localization and phenotyping from dense 3D point clouds.

