

1637915: Coordinated Detection and Tracking of Hazardous Agents with Aerial and Aquatic Robots to Inform Emergency Responders

dge (Er)

Pratap Tokekar Department of Electrical & Computer Engineering tokekar@vt.edu, @tokekar David Schmale Plant Pathology, Physiology, and Weed Science dschmale@vt.edu, @schmalelab

Motivation

The goal of this project is to enable emergency responders to effectively **detect and track hazardous agents** that may be rapidly spreading in aquatic environments using a coordinated team of UAVs and USVs to detect, track, sample, and diagnose the nature of hazardous agents.

- <u>Objective 1</u>: Develop algorithms for using a team of UAVs to autonomously **track a rapidly expanding** (and possibly bifurcating) plume using downwards facing sensors. <u>Objective 2</u>: Use USVs fitted with a unique set of sensors to **sample and characterize** the
- <u>Objective 2</u>: Use USVs fitted with a unique set of sensors to sample and characterize nature of the hazards.
- <u>Objective 3</u>: Deploying a USV is a time-consuming operation. Selectively deploy the USVs based on information gathered by the UAVs.
- By visualizing the spatiotemporal flow along with annotated information from the USVs, the emergency responders can find and localize the sources of the hazardous thread.

Sensing Hazardous Agents with USVs

- The Schmale Lab worked with members of the VT Rescue Squad and the Blacksburg Rescue Squad to **locate a sunken rescue manikin** using an ROV tethered to the USV.
- We developed a system to collect water samples containing artificial dyes using a 3Dprinted sampling device carrying a 50mL sterile conical tube tethered to a drone. The drone was used to collect surface water samples containing dye in a freshwater lake.
- We developed an underwater robot to monitor dyes under the surface and collect water samples. The robot was equipped with two fluorometers and a remoteoperated sampler to grab 200ml samples of water at precise underwater locations.
- We designed a **bioaerosol-sampling system onboard USV** to collect microbes and monitor particle sizes in the atmosphere. The system includes a series of 3D-printed impingers, two optical particle counters, and a weather station. A UAS was used in a coordinated effort with the USV to collect microorganisms on agar media 50 m above the surface of the water.

Learning and Tracking Hazardous Agents

Learning the Distribution of Hazardous Agents We use Gaussian Process Regression (GPR) to estimate the spatial distribution of the hazardous agents in the environment. Problem: Find a path that minimizes the (travel + measurement) time while guaranteeing that the posterior

prediction for every point in the environment is within $(1 + -\epsilon)$ fraction of the true value with probability at least $(1 - \delta)$.

We exploit the smoothness properties of the squared-exponential kernel to present a **constant-factor** approximation algorithm.

Tracking with Multi-Robot Teams

- The goal is to **track key points of interest** in the spatiotemporal field (e.g., local maxima of the field) using the team of robots.
- We formulate this a **multi-robot trajectory assignment problem**. Each robot $p_{\rm s} = \sum_{\rm s} p_{\rm s} = \sum_{\rm s} p_{\rm s} = p_$
- A sequential greedy algorithm yields a 2-approximation but can require *n* communication rounds.

[1] V. Suryan and P. Tokekar, "Learning a Spatial Field with Gaussian Process Regression in Minimum Time," in Workshop on the Algorithmic Foundations of Robotics (WAFR), 2018.
[2] V. Surya, A. K. Budhingia, R. Williams, and T. Tokekar, "Distributed Simultaneous Action and Target Asignment for Multi-Robot Multi-Target Tracking," in Proceedings of the IEEE Conference on Robotics and Automation (ICRA), 2018.
[9] V. Surya, and P. Tokekar, "Computer Wolf-Robot Epidemic of a Tarasialization of a Tarasiang tracking of the IEEE Conference on Robotics (WARR), 2019. Submitted.

Multi-Robot Mapping of Plumes

- We propose a **recursive depth-first search-based planning algorithm**. All robots start from the same location and collaboratably generate tours that **completely explore** the plume.
- We solve **two versions of the problem**; the first version is to map **the plume based on the grid map** whereas in the second version we consider **the plume with an arbitrary shape**.
- The competitive ratio for the grid map-based plume is $\frac{2(S_r+S_p)(R+[\log R])}{(S_r-S_p)(1+[\log R])}$ (*R* is the number of robots, *S_r* and *S_n* are the robot speed and the plume speed), and **that for the plume with an arbitrary shape** is

 $\frac{2(S_r+S_p)(18R+\lfloor \log R \rfloor)}{(S_r-S_p)(1+\lfloor \log R \rfloor)}.$

[Powers, CW, Henlon, R., and Schmeib, DG. 2018. Tracking of a fluorescent dpc in a freshwater lake with an unmarned surface vehicle and a unmarned aircraft system. Renote Sensing, 10(1), 81. doi:10.3390/is1000081.
[Powers, CW, Henlon, R., and Schmeib, DG. 2018. Renote colorison of microarganisms at two dpcths in a freshwater lake using an unmarned surface vehicle. (USV), Peers, 12(4), and (2017), 27(peers) (2017).
[Powers, CV, Henlon, R., and Schmeib, DG. 2018. Renote colorison of microarganisms at two dpcths in a freshwater lake using an unmarned surface vehicle. (USV), Peers, 12(4), 2017.
[Powers, CV, Henlon, R., and Schmeib, DG. 2018. Renote colorison of two provides and unmarned surface vehicle. (USV) Peers, 12(4), 2017.
[Powers, CV, Henlon, R., and Schmeib, DG. 2018. Coordinated Sampling of Microorganisms over Freshwater and Saltwater Environments using an Unmarned Surface. Vehicle. (USV) and a Small Unmarned Surface. Vehicle. (USV) Peers, 12(4), 2017.