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Coordinated	
  Resource	
  Management	
  of	
  
Cyber-­‐Physical-­‐Social	
  Power	
  Systems	
  	
  

Scien;fic	
  Impact:	
  	
  
•  Advances	
  in	
  game	
  

theory,	
  stochas@c	
  
op@miza@on,	
  tes@ng	
  
new	
  incen@ve	
  
mechanisms	
  

Solu;on:	
  	
  
•  Engage	
  flexible	
  loads	
  
•  Toward	
  cyber-­‐physical	
  

social	
  systems	
  (CPSS)	
  

Challenge:	
  	
  
•  Growing	
  uncertainty	
  &	
  

variability	
  in	
  power	
  
system	
  opera@ons	
  

•  (now)	
  most	
  balancing	
  
done	
  with	
  combus@on	
  
machines	
  	
  

Broader	
  Impact:	
  	
  
•  Tools	
  to	
  operate	
  and	
  

plan	
  human-­‐in-­‐the-­‐
loop	
  power	
  systems	
  

•  Guarantees	
  for	
  the	
  
capacity	
  of	
  human-­‐
centric	
  resources	
  

•  Testbeds	
  w/	
  u@li@es,	
  
Air	
  Force	
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Founda;ons	
  (1):	
  Coordinated	
  
aggrega;on	
  of	
  demand-­‐side	
  resources	
  

•  Energy-­‐defined	
  	
  
end-­‐uses	
  as	
  “tasks”	
  

•  Resource	
  management:	
  	
  
EDF,	
  LLF,	
  receding	
  	
  
horizon	
  control,	
  	
  
non-­‐coopera@ve	
  games	
  

•  Results:	
  
– Op@mal	
  causal	
  control	
  policies	
  do	
  not	
  exist	
  
– New	
  convex	
  SOC	
  “trajectory	
  following”	
  approach	
  
performs	
  best	
  (centralized)	
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the previous optimization problem. By defining the vectors
x

k
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In the objective function of the disciplined convex problem,
we remove the efficiency term and approximate the energy put
into the battery by the energy taken from the grid.

C. Uncertainty Handling

As the arrival and departure times, a
i

and d

i

, as well as the
arrival state of charge, E

iai , are dependent on uncertain factors
such as human behavior, weather, failures, etc., these are
considered estimations of stochastic variables. The realization
of the arrival and departure times are denoted by a

r

i

and d

r

i

,
respectively. Given that the optimization algorithm considers
the trajectory at the next time step, this information must
be available. Because d

i

is the time in which the vehicle is
expected to be no longer available, if a vehicle is available after
this time, dr

i

• d

i

, it is treated as it is just about to leave, and
the trajectory is kept constant at the expected departure value.
Similarly, if a vehicle arrives early, ar

i

† a

i

, its trajectory is
kept constant at its expected arrival value until a

i

. Thus, as
depicted in Fig. 2, outside the estimated interval the trajectory
is kept at a constant value equal to the first or last values.

−
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Estimated Boundaries
Trajectory Ex. 1 
Trajectory Ex. 2 
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gy

Time
Fig. 2: To handle the realization of the uncertainties, the trajectory
values are held constant outside the interval rai, dis.

Another uncertainty might be unforeseen limitations in
power by the charging circuitry in the vehicles. However this
can be mediated by feeding the maximum power back to
the optimization algorithm as a new limit and running the
optimization again because there is no communication with
on-board vehicle charging control.

D. Examples

We use some examples to illustrate advantages and issues
of the approaches explained before. In particular, we focus
on EDF and trajectory following. As the examples illustrate,
trajectory following can handle better situations in which
constraints are binding.
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Fig. 3: (Left) An example realization of the AGC signal, handled
by the different distribution algorithms. The algorithms are equally
capable of minimizing the error. (Right) An example realization of the
AGC signal, handled by the different distribution algorithms. When
the SoC are at their extremes, the regulation capacity of the system
is limited.

1) Example 1: Consider the case of 2 identical vehicles,
V1 and V2, each with E

`
i

“ 10, E

´
i

“ 0, m

`
i

“ 2 and
m

´
i

“ ´2, with initial state of charge E

iai “ 5 and with
unequal deadlines somewhere in the future. The efficiency is
not considered. Each of these vehicles has a trajectory t

ik

“ 5

for all time steps in this example.
We consider two example realizations of an AGC signal.

They both share the feature that they are at all times in the
range rm´

1 ` m

´
2 ,m

`
1 ` m

`
2 s. Given that the vehicles do not

hit their boundaries, they should be able to follow this signal
perfectly. We wish to show that EDF distributes the power in
such a way that the regulation capacity of the system is lesser
that it would be with trajectory following. On Fig. 3 (Left) we
see how small perturbations of the generation signal let the
state of charge of the vehicles go towards different extremes
for EDF. For trajectory following on the other hand the state
of charge is always close to the trajectory. We also see that
the algorithms are equally capable of handling the signal for
this realization.

2) Example 2: Now we will focus on a case in which there
are tangible differences between EDF and trajectory following.
As seen in section II-E, the regulation capacity of the vehicles
are diminished when near the boundaries. This can easily be
seen if a large signal, still within the boundaries of the system,
is introduced after the system has reached it’s steady state, as
seen on Fig. 3 (Right).

From this we can see that there are realizations of the AGC
signal where trajectory following behaves better than EDF.
As we will present in the next section, this difference has real
impacts on the system performance.

IV. SIMULATION STUDIES

To analyze the performance of the different scheduling
schemes in terms of effectively charging the vehicles for
their trips and following the regulation signals, we perform
several simulation studies. Given that the project is currently
under development, we use a mixture of real and simulated
data. We focus on a fleet of 18 electric vehicles. In terms
of trips, we use real arrival and departure data from the

Leads:	
  	
  
Poolla,	
  Callaway	
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Founda;ons	
  (1):	
  Coordinated	
  
aggrega;on	
  of	
  demand-­‐side	
  resources	
  

Lead:	
  
Khargonekar	
  

•  Offline	
  scheduling	
  	
  
for	
  loads:	
  minimizing	
  	
  
max	
  demand	
  
–  Problem	
  is	
  NP-­‐hard	
  
–  Strip-­‐packing	
  	
  
heuris@cs	
  have	
  bounds	
  	
  
provably	
  2-­‐3	
  @mes	
  op@mal	
  

•  When	
  cast	
  as	
  a	
  non-­‐coopera@ve	
  dynamic	
  game,	
  	
  
–  we	
  can	
  place	
  a	
  lower	
  bound	
  on	
  the	
  price	
  of	
  anarchy	
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Testbed	
  applica;on	
  (1):	
  LA	
  Air	
  
Force	
  Base	
  
•  20	
  electric	
  vehicles,	
  ±150	
  kW	
  total	
  
charging	
  

•  Integra@on	
  with	
  CA	
  electricity	
  
market	
  in	
  collabora@on	
  with	
  
Lawrence	
  Berkeley	
  Lab	
  

•  Real-­‐@me	
  control	
  according	
  to	
  Juul	
  
et	
  al	
  2015	
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Founda;ons	
  (2):	
  Guaranteeing	
  
human-­‐centered	
  resource	
  availability	
  

•  Thermosta@cally	
  
controlled	
  loads,	
  
EVs	
  have	
  “slack”	
  

•  New	
  results:	
  
– Model	
  this	
  slack	
  as	
  
a	
  “stochas@c	
  
bacery”	
  

–  Provide	
  sufficient	
  
condi@ons	
  to	
  
guarantee	
  the	
  size	
  
of	
  that	
  slack	
  

Lead:	
  	
  
Poolla	
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Fig. 3. Tracking of a regulation signal succeeds when it is within the power
limits and energy capacity of the (sufficient) battery model . (a) Power
trajectory. (b) State of charge.

Fig. 4. Tracking of a regulation signal fails when it exceeds the power limit of
the (necessary) battery model . (a) Power trajectory. (b) State of charge.

less than 1% of the maximum magnitude of the regulation
signal. Additional simulation results (not reported here) reveal
that even with one sample (4 s) communication delay, good
tracking is still achieved with a maximum tracking error less
than 5% of the maximum magnitude of the regulation signal. If
the regulation signal violates either the power limits or energy
capacity of the (necessary) battery model , the population
of TCLs fails to track the regulation signal. Figs. 4 and 5 show
that when the regulation signal exceeds the power limits or the
energy capacity respectively, we cannot track the regulation
signal. Extensive simulations (not reported here) using other
regulation signals yield similar conclusions.

Fig. 5. Tracking of a regulation signal fails when it exceeds the energy capacity
of the (necessary) battery model . (a) Power trajectory. (b) State of charge.

Fig. 6. Tracking of a typical 6-h regulation signal from PJM that is within
the power limits and energy capacity of the (sufficient) battery model .
(a) Power trajectory. (b) State of charge.

TABLE V
PREDICTION PERFORMANCE OF THE SUFFICIENT BATTERY MODEL

We use a typical 6-h-long regulation signal from PJM [shown
in Fig. 6(a)] that is fairly close to the power limits and en-
ergy capacity to test the prediction performance of our sufficient
battery model. Specifically, we examine the effect of tracking
of a regulation signal that (just) satisfies the sufficient battery
model on the number of additional ON/OFF switchings that
occur above nominal, and occurrence of short cycling events.
Table V shows the performance statistics. The average number

5	
  



Founda;ons	
  (3):	
  Incen;vizing	
  human-­‐
in-­‐the-­‐loop	
  power	
  system	
  opera;ons	
  

•  Individual	
  vs	
  collec@ve	
  ac@on	
  
–  Value	
  of	
  sole	
  ac@on	
  low	
  
–  Collec@ve	
  ac@on	
  has	
  high	
  	
  
value	
  in	
  aggregate	
  

•  Prospect	
  theory:	
  individuals	
  
respond	
  to	
  differently	
  to	
  
incen@ves	
  that	
  are	
  
–  Large,	
  low	
  probability	
  vs	
  
–  Small,	
  high	
  probability	
  

•  Result:	
  algorithms	
  to	
  pool	
  benefit	
  and	
  raffle	
  
reward	
  that	
  could	
  produce	
  larger	
  response	
  than	
  
reward	
  based	
  directly	
  on	
  contribu@on	
  

Lead:	
  	
  
Bitar	
  

A Lottery Incentive for Peak Shaving

E.Bitar (Cornell University) School of Electrical and Computer Engineering Cornell University
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Testbed	
  applica;on	
  (2):	
  
Residen;al	
  AC	
  
•  400	
  customer	
  DR	
  pilot	
  with	
  Con	
  

Edison	
  
–  U@lity	
  increases	
  customer	
  temperature	
  
5F	
  for	
  4	
  hours,	
  5	
  @mes	
  /	
  summer	
  

–  Half	
  of	
  par@cipants	
  receive	
  flat	
  
payment,	
  half	
  par@cipate	
  in	
  locery	
  

•  Results:	
  
–  Locery	
  treatment	
  group	
  par@cipated	
  
roughly	
  60%	
  more	
  

–  Par@cipa@on	
  reinforced	
  with	
  small	
  early	
  
rewards	
  

–  Par@cipa@on	
  less	
  dependent	
  on	
  outside	
  
temperature,	
  history	
  of	
  DR	
  events	
  for	
  
locery	
  group	
  

Lead:	
  	
  
Bitar	
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Peak Load in New York City (NYC)

Air conditioning (AC) loads ⇠ 50% of peak load on a hot summer day.

6 million window-mounted AC units in NYC

Unit capacity ⇡ 500 - 2000 W

Total capacity ⇡ 3 - 12 GW
(just window units)

Collaborated with Con Edison on a small (400 customer) demand-response pilot
to harness this capacity for peak shaving.

E.Bitar (Cornell University) School of Electrical and Computer Engineering Cornell University
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Control Architecture

Communication and Control Architecture

AC#

Electricity#Grid#

AC# AC#

U/lity#

#########Internet#

Two-way communication
through the internet

Utility can measure
temperature and power
consumption in real time

Utility has direct control of
temperature setpoint of AC
unit

E.Bitar (Cornell University) School of Electrical and Computer Engineering Cornell University
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Founda;ons	
  (4):	
  Planning	
  cyber	
  
physical	
  social	
  systems	
  

•  Iden@fying	
  the	
  social	
  
welfare	
  benefits	
  of	
  CPSS	
  
investments	
  requires	
  a	
  
long-­‐run	
  view	
  

•  Results:	
  	
  
–  theore@cal	
  underpinnings	
  
for	
  capacity	
  expansion	
  with	
  
CPSS	
  “priced	
  in”	
  

– welfare	
  benefits	
  of	
  CPSS	
  
infrastructure	
  robust	
  to	
  cost	
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Table 3: Demand elasticities

with no automation with automation

low increase medium increase high increase
own cross own cross own cross own cross
(0.02) 0.07 (0.04) 0.14 (0.05) 0.20 (0.07) 0.27
(0.04) 0.14 (0.05) 0.20 (0.07) 0.27 (0.08) 0.33
(0.05) 0.20 (0.07) 0.27 (0.08) 0.33 (0.10) 0.40
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Fig. 3: Welfare di↵erence by costs of demand-side technolgies

5.4 Results

This subsection organizes the expositions of the results starting with the welfare
analysis and continuing with the analysis of the technology mix. For clarity and
succinctness, the results here correpond to those of California. Whenever relevant,
the key di↵erneces between the set of results are highlighted and appendix D
provide further details on the Danish case.

Figure 3 and 4 portray welfare di↵erences in absolute and relative terms be-
tween the portfolios. Specifically, the welfare of the portfolio with two tari↵s is
substracted from the one associated to the portfolio with three. While black lines
depict the absolute di↵erences, the gray lines describe the relative. The thickness
of the lines distinguish three average levels for the elaticities, the thickest being
the lowest and the thinnest the highest.

In absolute terms, it is possible to see in both figures that the di↵erences
are notorious, even in the cases wehere the demand-elasticities are relatively low.
While the relative figures may appear small, it is important to observe that they
account for all additional costs associated to having more dynamic rates. In the
Danish case, both the absoulte and the relative welfare di↵erence are smaller when
compared with the ones of California.

The impact of the economics of the demand-side technologies apear to be
inversely propotional to the welfare di↵erences. The less expensive the technolgies

Optimal Rate Design in Modern Power Systems 5
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Fig. 1: Conceptual model of retail customers long-run decisions

the feasible region for ↵ writes as follows

A :=
n

↵ 2 R
|H|
+ : �↵  ⌫

o

In order to characterize the customer short-run decisions, this papers follows the
standard approach in a partial equilibrium analysis. Under this method the pref-
erences of a customer in segment (✓, ⌧) are synthetized by a quasi-linear utility
function U✓

!(x) + m, where x 2 RT
+ corresponds to the customer allocation of

power consumption over time, and m 2 R+ is a numeraire commodity 2.
For a price profile p 2 RT

++ \ P and state of nature !, a customer with a
budget I✓ finds

x✓
!

⇣

p, I✓
⌘

:= argmax
n

U✓
!(x) +m : I✓ � p>x+m, (x,m) � 0

o

the demand correspondence at prices p. As it is customary in the literature of peak-
load pricing, this work assumes that the preferences of the customers are strictly
convex. This implies that U✓

!(·) is strictly concave and x✓
!(p, I

✓) is a singleton. For
simplicity, denote the customer demand simply D✓

!(p). As for the customers gross
surplus, the following expression defines it,

S✓
!(p) := U✓

!

⇣

D✓
!(p)

⌘

.

3.2 Load-serving entity

An LSE serves a customer base, o↵ering an array of retail programs, each of which
this agent structures as two-part tari↵s. The programs include a fixed charge over
the horizon, which is independent of power consumption, and a volumetric charge,
or a charge per unit of consumption. The volumetric charge varies across time and
states of nature and the LSE may impose constraints in order to, for instance,
provide customers with simpler programs.

2 The dependency of U✓
!(·) on the state of nature ! reflects the fact that customers prefer-

ences may change depending on the states. For instance, power consumption patterns might
be influenced by weather patterns.



Con;nuing	
  work	
  

•  Both	
  testbeds	
  will	
  con@nue	
  to	
  serve	
  as	
  
research	
  plamorms	
  
–  Incen@ves	
  for	
  con@nuous	
  DR	
  with	
  Con	
  Edison	
  
– Deeper	
  collabora@on	
  with	
  California	
  ISO	
  à	
  
integra@on	
  of	
  EV	
  charging	
  into	
  electricity	
  markets	
  

•  Connec@ng	
  incen@ve	
  design	
  testbed	
  results	
  to	
  
planning	
  models	
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