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Coordinated	  Resource	  Management	  of	  
Cyber-‐Physical-‐Social	  Power	  Systems	  	  

Scien;fic	  Impact:	  	  
•  Advances	  in	  game	  

theory,	  stochas@c	  
op@miza@on,	  tes@ng	  
new	  incen@ve	  
mechanisms	  

Solu;on:	  	  
•  Engage	  flexible	  loads	  
•  Toward	  cyber-‐physical	  

social	  systems	  (CPSS)	  

Challenge:	  	  
•  Growing	  uncertainty	  &	  

variability	  in	  power	  
system	  opera@ons	  

•  (now)	  most	  balancing	  
done	  with	  combus@on	  
machines	  	  

Broader	  Impact:	  	  
•  Tools	  to	  operate	  and	  

plan	  human-‐in-‐the-‐
loop	  power	  systems	  

•  Guarantees	  for	  the	  
capacity	  of	  human-‐
centric	  resources	  

•  Testbeds	  w/	  u@li@es,	  
Air	  Force	  
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Founda;ons	  (1):	  Coordinated	  
aggrega;on	  of	  demand-‐side	  resources	  

•  Energy-‐defined	  	  
end-‐uses	  as	  “tasks”	  

•  Resource	  management:	  	  
EDF,	  LLF,	  receding	  	  
horizon	  control,	  	  
non-‐coopera@ve	  games	  

•  Results:	  
– Op@mal	  causal	  control	  policies	  do	  not	  exist	  
– New	  convex	  SOC	  “trajectory	  following”	  approach	  
performs	  best	  (centralized)	  
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In the objective function of the disciplined convex problem,
we remove the efficiency term and approximate the energy put
into the battery by the energy taken from the grid.

C. Uncertainty Handling

As the arrival and departure times, a
i

and d

i

, as well as the
arrival state of charge, E

iai , are dependent on uncertain factors
such as human behavior, weather, failures, etc., these are
considered estimations of stochastic variables. The realization
of the arrival and departure times are denoted by a

r

i

and d

r

i

,
respectively. Given that the optimization algorithm considers
the trajectory at the next time step, this information must
be available. Because d

i

is the time in which the vehicle is
expected to be no longer available, if a vehicle is available after
this time, dr

i

• d

i

, it is treated as it is just about to leave, and
the trajectory is kept constant at the expected departure value.
Similarly, if a vehicle arrives early, ar

i

† a

i

, its trajectory is
kept constant at its expected arrival value until a

i

. Thus, as
depicted in Fig. 2, outside the estimated interval the trajectory
is kept at a constant value equal to the first or last values.
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Fig. 2: To handle the realization of the uncertainties, the trajectory
values are held constant outside the interval rai, dis.

Another uncertainty might be unforeseen limitations in
power by the charging circuitry in the vehicles. However this
can be mediated by feeding the maximum power back to
the optimization algorithm as a new limit and running the
optimization again because there is no communication with
on-board vehicle charging control.

D. Examples

We use some examples to illustrate advantages and issues
of the approaches explained before. In particular, we focus
on EDF and trajectory following. As the examples illustrate,
trajectory following can handle better situations in which
constraints are binding.
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Fig. 3: (Left) An example realization of the AGC signal, handled
by the different distribution algorithms. The algorithms are equally
capable of minimizing the error. (Right) An example realization of the
AGC signal, handled by the different distribution algorithms. When
the SoC are at their extremes, the regulation capacity of the system
is limited.

1) Example 1: Consider the case of 2 identical vehicles,
V1 and V2, each with E

`
i

“ 10, E

´
i

“ 0, m

`
i

“ 2 and
m

´
i

“ ´2, with initial state of charge E

iai “ 5 and with
unequal deadlines somewhere in the future. The efficiency is
not considered. Each of these vehicles has a trajectory t

ik

“ 5

for all time steps in this example.
We consider two example realizations of an AGC signal.

They both share the feature that they are at all times in the
range rm´

1 ` m

´
2 ,m

`
1 ` m

`
2 s. Given that the vehicles do not

hit their boundaries, they should be able to follow this signal
perfectly. We wish to show that EDF distributes the power in
such a way that the regulation capacity of the system is lesser
that it would be with trajectory following. On Fig. 3 (Left) we
see how small perturbations of the generation signal let the
state of charge of the vehicles go towards different extremes
for EDF. For trajectory following on the other hand the state
of charge is always close to the trajectory. We also see that
the algorithms are equally capable of handling the signal for
this realization.

2) Example 2: Now we will focus on a case in which there
are tangible differences between EDF and trajectory following.
As seen in section II-E, the regulation capacity of the vehicles
are diminished when near the boundaries. This can easily be
seen if a large signal, still within the boundaries of the system,
is introduced after the system has reached it’s steady state, as
seen on Fig. 3 (Right).

From this we can see that there are realizations of the AGC
signal where trajectory following behaves better than EDF.
As we will present in the next section, this difference has real
impacts on the system performance.

IV. SIMULATION STUDIES

To analyze the performance of the different scheduling
schemes in terms of effectively charging the vehicles for
their trips and following the regulation signals, we perform
several simulation studies. Given that the project is currently
under development, we use a mixture of real and simulated
data. We focus on a fleet of 18 electric vehicles. In terms
of trips, we use real arrival and departure data from the

Leads:	  	  
Poolla,	  Callaway	  
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Founda;ons	  (1):	  Coordinated	  
aggrega;on	  of	  demand-‐side	  resources	  

Lead:	  
Khargonekar	  

•  Offline	  scheduling	  	  
for	  loads:	  minimizing	  	  
max	  demand	  
–  Problem	  is	  NP-‐hard	  
–  Strip-‐packing	  	  
heuris@cs	  have	  bounds	  	  
provably	  2-‐3	  @mes	  op@mal	  

•  When	  cast	  as	  a	  non-‐coopera@ve	  dynamic	  game,	  	  
–  we	  can	  place	  a	  lower	  bound	  on	  the	  price	  of	  anarchy	  	  

3	  
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Testbed	  applica;on	  (1):	  LA	  Air	  
Force	  Base	  
•  20	  electric	  vehicles,	  ±150	  kW	  total	  
charging	  

•  Integra@on	  with	  CA	  electricity	  
market	  in	  collabora@on	  with	  
Lawrence	  Berkeley	  Lab	  

•  Real-‐@me	  control	  according	  to	  Juul	  
et	  al	  2015	  

	  

Lead:	  	  
Callaway	  
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Founda;ons	  (2):	  Guaranteeing	  
human-‐centered	  resource	  availability	  

•  Thermosta@cally	  
controlled	  loads,	  
EVs	  have	  “slack”	  

•  New	  results:	  
– Model	  this	  slack	  as	  
a	  “stochas@c	  
bacery”	  

–  Provide	  sufficient	  
condi@ons	  to	  
guarantee	  the	  size	  
of	  that	  slack	  

Lead:	  	  
Poolla	  

HAO et al.: AGGREGATE FLEXIBILITY OF THERMOSTATICALLY CONTROLLED LOADS 195

Fig. 3. Tracking of a regulation signal succeeds when it is within the power
limits and energy capacity of the (sufficient) battery model . (a) Power
trajectory. (b) State of charge.

Fig. 4. Tracking of a regulation signal fails when it exceeds the power limit of
the (necessary) battery model . (a) Power trajectory. (b) State of charge.

less than 1% of the maximum magnitude of the regulation
signal. Additional simulation results (not reported here) reveal
that even with one sample (4 s) communication delay, good
tracking is still achieved with a maximum tracking error less
than 5% of the maximum magnitude of the regulation signal. If
the regulation signal violates either the power limits or energy
capacity of the (necessary) battery model , the population
of TCLs fails to track the regulation signal. Figs. 4 and 5 show
that when the regulation signal exceeds the power limits or the
energy capacity respectively, we cannot track the regulation
signal. Extensive simulations (not reported here) using other
regulation signals yield similar conclusions.

Fig. 5. Tracking of a regulation signal fails when it exceeds the energy capacity
of the (necessary) battery model . (a) Power trajectory. (b) State of charge.

Fig. 6. Tracking of a typical 6-h regulation signal from PJM that is within
the power limits and energy capacity of the (sufficient) battery model .
(a) Power trajectory. (b) State of charge.

TABLE V
PREDICTION PERFORMANCE OF THE SUFFICIENT BATTERY MODEL

We use a typical 6-h-long regulation signal from PJM [shown
in Fig. 6(a)] that is fairly close to the power limits and en-
ergy capacity to test the prediction performance of our sufficient
battery model. Specifically, we examine the effect of tracking
of a regulation signal that (just) satisfies the sufficient battery
model on the number of additional ON/OFF switchings that
occur above nominal, and occurrence of short cycling events.
Table V shows the performance statistics. The average number

5	  



Founda;ons	  (3):	  Incen;vizing	  human-‐
in-‐the-‐loop	  power	  system	  opera;ons	  

•  Individual	  vs	  collec@ve	  ac@on	  
–  Value	  of	  sole	  ac@on	  low	  
–  Collec@ve	  ac@on	  has	  high	  	  
value	  in	  aggregate	  

•  Prospect	  theory:	  individuals	  
respond	  to	  differently	  to	  
incen@ves	  that	  are	  
–  Large,	  low	  probability	  vs	  
–  Small,	  high	  probability	  

•  Result:	  algorithms	  to	  pool	  benefit	  and	  raffle	  
reward	  that	  could	  produce	  larger	  response	  than	  
reward	  based	  directly	  on	  contribu@on	  

Lead:	  	  
Bitar	  

A Lottery Incentive for Peak Shaving

E.Bitar (Cornell University) School of Electrical and Computer Engineering Cornell University

6 / 9
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Testbed	  applica;on	  (2):	  
Residen;al	  AC	  
•  400	  customer	  DR	  pilot	  with	  Con	  

Edison	  
–  U@lity	  increases	  customer	  temperature	  
5F	  for	  4	  hours,	  5	  @mes	  /	  summer	  

–  Half	  of	  par@cipants	  receive	  flat	  
payment,	  half	  par@cipate	  in	  locery	  

•  Results:	  
–  Locery	  treatment	  group	  par@cipated	  
roughly	  60%	  more	  

–  Par@cipa@on	  reinforced	  with	  small	  early	  
rewards	  

–  Par@cipa@on	  less	  dependent	  on	  outside	  
temperature,	  history	  of	  DR	  events	  for	  
locery	  group	  

Lead:	  	  
Bitar	  

7	  

Peak Load in New York City (NYC)

Air conditioning (AC) loads ⇠ 50% of peak load on a hot summer day.

6 million window-mounted AC units in NYC

Unit capacity ⇡ 500 - 2000 W

Total capacity ⇡ 3 - 12 GW
(just window units)

Collaborated with Con Edison on a small (400 customer) demand-response pilot
to harness this capacity for peak shaving.

E.Bitar (Cornell University) School of Electrical and Computer Engineering Cornell University

1 / 9

Control Architecture

Communication and Control Architecture

AC#

Electricity#Grid#

AC# AC#

U/lity#

#########Internet#

Two-way communication
through the internet

Utility can measure
temperature and power
consumption in real time

Utility has direct control of
temperature setpoint of AC
unit

E.Bitar (Cornell University) School of Electrical and Computer Engineering Cornell University
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Founda;ons	  (4):	  Planning	  cyber	  
physical	  social	  systems	  

•  Iden@fying	  the	  social	  
welfare	  benefits	  of	  CPSS	  
investments	  requires	  a	  
long-‐run	  view	  

•  Results:	  	  
–  theore@cal	  underpinnings	  
for	  capacity	  expansion	  with	  
CPSS	  “priced	  in”	  

– welfare	  benefits	  of	  CPSS	  
infrastructure	  robust	  to	  cost	  

8	  

Lead:	  
Callaway	  
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Table 3: Demand elasticities

with no automation with automation

low increase medium increase high increase
own cross own cross own cross own cross
(0.02) 0.07 (0.04) 0.14 (0.05) 0.20 (0.07) 0.27
(0.04) 0.14 (0.05) 0.20 (0.07) 0.27 (0.08) 0.33
(0.05) 0.20 (0.07) 0.27 (0.08) 0.33 (0.10) 0.40
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Fig. 3: Welfare di↵erence by costs of demand-side technolgies

5.4 Results

This subsection organizes the expositions of the results starting with the welfare
analysis and continuing with the analysis of the technology mix. For clarity and
succinctness, the results here correpond to those of California. Whenever relevant,
the key di↵erneces between the set of results are highlighted and appendix D
provide further details on the Danish case.

Figure 3 and 4 portray welfare di↵erences in absolute and relative terms be-
tween the portfolios. Specifically, the welfare of the portfolio with two tari↵s is
substracted from the one associated to the portfolio with three. While black lines
depict the absolute di↵erences, the gray lines describe the relative. The thickness
of the lines distinguish three average levels for the elaticities, the thickest being
the lowest and the thinnest the highest.

In absolute terms, it is possible to see in both figures that the di↵erences
are notorious, even in the cases wehere the demand-elasticities are relatively low.
While the relative figures may appear small, it is important to observe that they
account for all additional costs associated to having more dynamic rates. In the
Danish case, both the absoulte and the relative welfare di↵erence are smaller when
compared with the ones of California.

The impact of the economics of the demand-side technologies apear to be
inversely propotional to the welfare di↵erences. The less expensive the technolgies

Optimal Rate Design in Modern Power Systems 5
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Fig. 1: Conceptual model of retail customers long-run decisions

the feasible region for ↵ writes as follows

A :=
n

↵ 2 R
|H|
+ : �↵  ⌫

o

In order to characterize the customer short-run decisions, this papers follows the
standard approach in a partial equilibrium analysis. Under this method the pref-
erences of a customer in segment (✓, ⌧) are synthetized by a quasi-linear utility
function U✓

!(x) + m, where x 2 RT
+ corresponds to the customer allocation of

power consumption over time, and m 2 R+ is a numeraire commodity 2.
For a price profile p 2 RT

++ \ P and state of nature !, a customer with a
budget I✓ finds

x✓
!

⇣

p, I✓
⌘

:= argmax
n

U✓
!(x) +m : I✓ � p>x+m, (x,m) � 0

o

the demand correspondence at prices p. As it is customary in the literature of peak-
load pricing, this work assumes that the preferences of the customers are strictly
convex. This implies that U✓

!(·) is strictly concave and x✓
!(p, I

✓) is a singleton. For
simplicity, denote the customer demand simply D✓

!(p). As for the customers gross
surplus, the following expression defines it,

S✓
!(p) := U✓

!

⇣

D✓
!(p)

⌘

.

3.2 Load-serving entity

An LSE serves a customer base, o↵ering an array of retail programs, each of which
this agent structures as two-part tari↵s. The programs include a fixed charge over
the horizon, which is independent of power consumption, and a volumetric charge,
or a charge per unit of consumption. The volumetric charge varies across time and
states of nature and the LSE may impose constraints in order to, for instance,
provide customers with simpler programs.

2 The dependency of U✓
!(·) on the state of nature ! reflects the fact that customers prefer-

ences may change depending on the states. For instance, power consumption patterns might
be influenced by weather patterns.



Con;nuing	  work	  

•  Both	  testbeds	  will	  con@nue	  to	  serve	  as	  
research	  plamorms	  
–  Incen@ves	  for	  con@nuous	  DR	  with	  Con	  Edison	  
– Deeper	  collabora@on	  with	  California	  ISO	  à	  
integra@on	  of	  EV	  charging	  into	  electricity	  markets	  

•  Connec@ng	  incen@ve	  design	  testbed	  results	  to	  
planning	  models	  
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