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Human Robot Teaming in Uncertain Env.
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Our goal: create and solve realistic models for 
coordinating teams of humans and robots in 

uncertain environments
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Non-Visual Activity Modeling
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Frank,  Kubota, and Riek, IROS 2019.
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Multimodal Contextualized Activity Recognition

“Coordinating Human Robot Teams in Uncertain Environments”– C. Amato (NEU) and L. Riek (UCSD)

Kubota, Iqbal,  Shah, and Riek, ICRA 2019.
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ED Workflow Characterization & Task Representation

“Coordinating Human Robot Teams in Uncertain Environments”– C. Amato (NEU) and L. Riek (UCSD)

Taylor, Matsumoto, and Riek, AAAI 2020;  Taylor, Matsumoto, Xiao, and Riek, In review

There are no clinicians along a third path, but it is much
longer than the other two.

In this scenario, the robot should not choose the path with
the high-priority team. However, it might be acceptable for
it to choose the path with the low-priority team, even though
it will interrupt clinicians.

The goal of our robot is to plan a path from a starting po-
sition to a goal position while avoiding hallways where high
acuity patients are being treated (to the best of its ability).
The robot’s behavior is generated by a policy ⇡ which maps
states to actions that maximizes its overall reward Rt where
� is the discounted factor and rt is the reward at time t (See
Equ. 1).

Rt =
1X

t=0

�trt (1)

The agent’s behavior is formalized by a policy ⇡ that maps
states S to a set of actions A where,

• States S = {s1, s2, . . . , N} are locations on the map.

• Actions A = {a1, a2, . . . ,M} are a move from one node
of the graph node to another node.

• Rewards R encodes the level of priority of a clinical team.

We use an action-value function Q⇤(s, a) to determine the
value of a given state. By maximizing that action-value func-
tion, we maximize the expected rewards over all a series of
actions following a policy ⇡.

Q⇤(st, at) = max
⇡

E[Rt|st, at,⇡] (2)

Li(✓i) E[(r + �
0

max
a

Q(s0, a0; ✓�i )�Q(s, a; ✓i))
2] (3)

To maximize the rewards over all actions, the optimal
action-value function obeys the Bellman Equation shown
below. As done commonly in the literature [44, 23, 12, 4],
we use Q-Learning [62], a model-free algorithm to teach that
robot a policy of what actions to take under certain penalties
and rewards.

Q⇤(st, at) = Est⇠S [rt + �max
at

Q⇤(st, at)|s, a] (4)

The inputs to our RL algorithm are a map of the environ-
ment and the location of the robot, clinical teams and their
priority, and the user (See Fig. 4). To represent the environ-
ment of the ED, we use a topological graph overlaid on our
map of the environment. The graph nodes represent way-
points throughout the ED such as the location of the robot
(blue), groups of clinicians talking in the hallway (yellow),
groups of clinicians working on life-critical patients (or-
ange), and the user that made a request for delivery (green),
as well as intersections in the hallways (black). The robot’s
position (blue) is the starting position and the user’s position
(green) is the goal location.

Figure 4: This is a simple example of an ED environment.
We model the environment with a graph. The robot (blue)
needs to deliver supplies to waypoints in the graph (black
nodes). It must navigate around both low priority groups
(brown) and high priority groups (orange). The ED staff
member who made the original request appears in green.
The goal of the delivery robot is to generate a path from
its current position to the ED staff requester without inter-
rupting the safety-critical team (Figure inspired by [19]).

Scenarios in the Emergency Department
We present three scenarios in the ED for our agent to learn
how to plan paths (See Figure 5). The level of difficulty of
the scenarios range from easy, medium, and hard in terms of
the number of clinical teams that the agent needs to consider
for its paths.

We trained a Q-Learning algorithm [62] over 700
episodes. Our agent takes an action using a ✏-greedy strat-
egy as commonly done in the literature [46]. This strategy
explores a policy by choosing a random action with proba-
bility 2 [0,1] We incorporate the patient priority in our re-
ward function as shown below. We use the following param-
eters to train a Q-Learning algorithm: rh = �1, rh = �5,
rh = 100 and d is the length of the path represented between
two states being considering. A negative reward means to
avoid a hallway in the ED and a positive reward repre-
sents the location of the goal. We use a discount coefficient
� = 0.8

r =

8
<

:

d+ rh, if high priority group
d+ rl, if low priority group
rg, if found goal

The resulting paths for our scenarios are shown in Fig-
ure 5. Our agent generated easy and medium as expected. In
the hard scenario, the agent generates behavior that depicts
the key challenge in our current work – that is, how can an
agent generate paths when the ED is when all paths have pa-
tients with various levels of acuity? When all paths contain
groups, both low priority and high priority, the agent never
finds a solution because the desired behavior must be cap-
tured by a more complex policy. This forms the basis of our
existing work as we design delivery robots for the ED under
conditions where all hallways can be cluttered and occupied
by clinical teams that perform procedures on highly acute
patients.
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• Sample efficient RL for POMDPs

• Our method
• Scalable method that learns the factorization to 

generalize more quickly

• Novel sampling and particle reinvigoration method for 
estimating belief over states and models

• Significantly outperforms previous methods and 
scales to larger domains

Bayesian Reinforcement Learning for POMDPs

Katt, Oliehoek and Amato - AAMAS 19

Katt, Oliehoek and Amato - ICML 17
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• Problems decompose into subtasks, which we call 
macro-actions

•Allows for asynchronous decision-making

• Current deep multi-agent reinforcement learning 
can’t incorporate asynchronous (macro-)actions 

•Developed 

•Methods for centralized and decentralized 
learning  Xiao, Hoffman and Amato – CoRL 19

•As well as centralized learning for decentralized 
execution  Xiao, Hoffman, Xia and Amato – ICRA 20

Deep (Non-Bayesian) Hierarchical RL for POMDPs
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Deep (Non-Bayesian) Hierarchical RL for POMDPs

Xiao, Hoffman, Xia and Amato – ICRA 20
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• More scalable and sample-efficient learning
• Better integration between learning human models and robot policies
• Evaluate models with human robot teams at the UCSD Medical 

Simulation and Training Center

Future work


