
Situating Robots in the Emergency Department
Characterized Workflow and Task Representation for Situating Robots in the ED [5]; 
Designed Acuity-Aware Social Navigation Algorithms [6]
• The ED is an uncertain environment in which mistakes can be deadly and providers are over burdened. 

• Well-designed & contextualized robots could relieve providers of non-value added tasks and enable them 
to spend more time on patient care. e.g., delivery robots.

• We used domain knowledge to characterize staff workflow and patient experience, identify key 
considerations for robots in the ED, inc.: safety, physical and behavioural attributes, usability, and training

• We introduced a task representation [5] and new acuity-aware social navigation algorithm [6] which 
incorporates both patient criticality and staff workflow. 

Coordinating Human-Robot Teams in Uncertain Environments
Christopher Amato, Northeastern University &  Laurel D. Riek, UC San Diego

Project overview
Goal: create and solve realistic 

models for coordinating teams of 
humans and robots in uncertain 
environments

1. Re-conceptualize multi-human teamwork 
that include dynamic, stochastic 
environments

• See Intention Modelling for Teaming 
under Uncertainty [4][5]

2. Develop realistic (POMDP) models of 
human-robot teamwork with uncertainty and 
partial observability

• In progress

3. Create scalable techniques for planning and 
learning in these models

• See Bayesian Reinforcement 
Learning (RL) for POMDPs [1] and 
Hierarchical Deep Multi-Agent 
Reinforcement Learning (MARL) [2][3]

4. Test in simulation and emergency 
department (ED) settings

• See Situating Robots in the 
Emergency Department [6][7]

Bayesian Reinforcement Learning (RL) for POMDPs
Developed scalable Bayesian RL methods for POMDPs
• Bayesian RL can optimally balance exploration and exploitation

• Ideal for online learning—optimally sample efficient!

• Can be computationally challenging, but developed factored, sample-based methods

• These methods outperform previous methods, allowing learning in large POMDPs

[1] Bayesian Reinforcement Learning in Factored POMDPs. Sammie Katt, Frans A. Oliehoek and Christopher Amato. In the Proceedings of the Eighteenth International Conference on Autonomous Agents and Multi-Agent System (AAMAS-19), May 2019
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[4] Frank, A., Kubota, A., and Riek, L.D. (2019). "Wearable activity recognition for robust human-robot teaming in safety-critical environments via hybrid neural networks". Andrea Frank, Alyssa Kubota, Laurel D. Riek. IEEE International Conference Intelligent Robots and Systems (IROS-19), 2019 
[5] Activity recognition in manufacturing: The roles of motion capture and sEMG+inertial wearables in detecting fine vs. gross motion. Alyssa Kubota, Tariq Iqbal, Julie A. Shah, and Laurel D. Riek. IEEE International Conference on Robotics and Automation (ICRA-19), 2019. 
[6] Situating Robots in the Emergency Department. Angelique Taylor, Sachiko Matsumoto, and Laurel D. Riek. AAAI Spring Symposium on Applied AI in Healthcare: Safety, Community, and the Environment (AAAI-20) , 2020
[7] Acuity-Aware Social Navigation in Emergency Medicine. Angelique Taylor, Sachiko Matsumoto, Wesley Xiao, and Laurel D. Riek. IEEE International Conference Intelligent Robots and Systems (IROS-20), In review 

POMDPs

Bayesian RL for POMDPs (e.g., [Ross et al. JMLR 11])
• Explicitly consider uncertainty over possible trans. and obs. models 
• Can start with prior over models and update based on observations
• Can now have belief over state and models

Scalable solution methods
• Developed method for learning factored model and solutions [1]
• Sampling method for scalable particle filtering and updating [1]
Results
• Our methods can learn quickly in all situations
• Drastically outperform previous methods
• Can learn efficiently by learning factored model and solution together

• S, a set of states
• A, a set of actions 
• T, the state transition model:   
• R, the reward model: 
• O, a set of observations
• Z, the observation model:

Intention Modelling for Teaming under Uncertainty
Created new deep learning methods for non-visual activity modelling [4] 
• Can detect both fine and gross motor movements, is immune to occlusion and avoids privacy concerns of 

visual sensing, augments linear and angular velocity w/ muscle activity data from wearable (Myo)

• Our methods outperformed the state-of-the-art classifiers by 28%, sEMG+Inertial yielded significantly 
higher classification accuracy than inertial alone

• Wearables are well-suited to activity recognition in uncertain environments

Designed new approaches for multimodal contextualized activity recognition [5]
• Created new multimodal dataset of gross and fine motor tasks (EMG/Inertial/MoCap), compared multiple 

activity recognition approaches for recognition suitability, employed early fusion

• Results suggest complementary strengths of each sensor type – task type should be taken into account
when engaging in sensor selection

Hierarchical Deep Multi-Agent Reinforcement Learning (MARL)
Developed deep MARL methods that can learn in asynchronous, hierarchical settings 
• Robots will execute at different task levels (e.g., high-level macro-actions and low-level controls)
• This is result in asynchronous execution for the agents
• Current deep MARL methods cannot solve this problem

Scalable solution methods
• Developed methods for multi-agent versions of POMDPs 

•Decentralized learning for decentralized execution [2]
•Online learning without communication

•Centralized learning for centralized execution [2]
•Online learning with full communication

•Centralized learning for decentralized execution [3]
•Communication during learning, but not execution

Results
• Experiments in simulation and hardware
• All methods can learn much faster and converge to higher solutions than 
using primitive (non-hierarchical) actions
• Centralized learning for decentralized execution methods can approach
fully centralized solutions
• These methods require much more data than the Bayesian ones

learning with macro-actions (MA) vs primitive-actions
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Centralized, decentralized and centralized learning for 
decentralized execution (Our-2) Figure 3: These figures show the hallways of emergency

departments. Patients are often treated in hallways when
the ED bedrooms are full. Placing patients in hallways is
a way to handle an overflow of patients. The hallways are
often cluttered, over crowded, and clinicians treating time-
sensitive safety-critical patients.

developing robots to perceive the actions of clinical work-
ers. Activity recognition has been approached using machine
learning such as supervised learning algorithms based on hu-
man joint positions [43, 51]. More recently, researchers have
employ deep learning techniques such as recurrent neural
networks to address this problem [5].

For sensors that go on robots, another consideration is
where to place the sensor(s). For the purposes of this pa-
per, we consider sensors placed onboard the robot, which is
known as an ego-centric (or first-person) perspective. Typ-
ically, LiDAR is placed at the robot’s base to be used for
Simultaneous Localization and Mapping (SLAM), a com-
monly used technique for navigation [6]. Visual sensors, like
RGB-D, are typically placed at human height on robots that
interact with people [56, 42]. This positioning provides an
adequate field-of-view for robots to observation its team-
mates.

An alternative to visual sensors are non-visual sensors that
can be placed on the human body, in our case, ED staff
or patients. Common non-visual, non-intrusive sensors in-
clude internal measurement units (IMUs), which measure
accelerations and velocities; sensors that measure physio-
logical information about the body, such as electromyog-
raphy (EMG), which detect the electrical activity of mus-
cles; and Radio Frequency Identification (RFID) tags that
provide positional information (such as where a staff mem-
ber, patient, or piece of equipment is located) These systems
avoid many of the data privacy concerns that occur with
video data, which is a common concern in healthcare set-
tings [32, 33]. Non-intrusive sensors are also used to avoid
occlusions and poor image quality, issues relevant to visual
sensors.

However, these sensors often communicate with each
other and the robot via WiFi or bluetooth. Reliable, fast WiFi
may be limited in the ED, and thick walls can block both
WiFi and bluetooth signals. Additionally, non-visual, wear-
able sensors are limited to the person or piece of equipment
they are on, whereas visual sensors can observe many differ-
ent entities at once.

Case Study: Delivery Robots
Based on our aforementioned work with ED staff, we have
been collaboratively designing a robot to deliver materials.
One major topic of concern was the need to fetch equip-
ment quickly. When clinicians need equipment for a patient
with high acuity, a member of the team needs to find and
fetch equipment, leaving the clinical team short one person.
If a robot could deliver equipment and materials, the afore-
mentioned delivery person could instead remain focused on
direct patient care tasks .

However, this is a challenging problem for robots. For one
thing, hallways in EDs can be very chaotic. Because there
are a limited number of rooms, patients are often treated in
the hallways. If a robot interrupts providers performing a
life-saving treatment on a patient, it could result in the pa-
tient dying. On the other hand, it may be acceptable for the
robot to interrupt teams performing lower priority tasks. For
instance, the robot might move through a group of convers-
ing clinicians if doing so allows it to more quickly complete
its delivery.

Thus, when delivering supplies, the robot must account
for the priority of the task clinicians are performing. In our
work, we formulate this research as a socially-aware path
planning problem, which we describe below in a case study.
We present a simple algorithm and task representation, de-
rived from our co-design activities with ED staff and on our
insights derived from the literature.

Task Representation
Reinforcement learning (RL) is a popular technique in
robotics and is commonly used for path planning [30, 31, 10,
11, 17, 45, 53, 27, 8, 36, 44]. It provides a framework where
an agent explores or exploits an environment through explo-
ration. Recently, researchers have combined deep learning
methods with RL [27, 8]. However, prior RL approaches do
not address our problem as we need to account to various
levels of patient acuity, whether a hallway is too cluttered
or chaotic for a robot to navigate through, and how to han-
dle situations when all hallways in the ED are cluttered and
the robot still needs to deliver materials to a patient with a
life-threatening condition.

Nevertheless, RL is particularly well-suited for this prob-
lem because the environment can be represented as a
Markov Decision Process (MDP), where we can easily rep-
resent our scenario in terms of the environment, actions
of the robot, and its goals. MDPs are particularly useful
for learning decision making policies in uncertain environ-
ments. The robot learns to plan paths through exploration
of the environment in an unsupervised manner through a
penalty-reward system.

Figure 4 shows a simplified example of the scenario we
envision. In this scenario, a provider (green) needs sup-
plies and asks the robot to deliver them. The robot (blue)
must plan a path from its current location to the provider.
Two potential paths are approximately equal in length. How-
ever, along one of these paths, clinicians are treating a high-
priority patient (orange). Along the other, clinicians are en-
gaged in a lower priority task, such as conversing (brown).

There are no clinicians along a third path, but it is much
longer than the other two.

In this scenario, the robot should not choose the path with
the high-priority team. However, it might be acceptable for
it to choose the path with the low-priority team, even though
it will interrupt clinicians.

The goal of our robot is to plan a path from a starting po-
sition to a goal position while avoiding hallways where high
acuity patients are being treated (to the best of its ability).
The robot’s behavior is generated by a policy ⇡ which maps
states to actions that maximizes its overall reward Rt where
� is the discounted factor and rt is the reward at time t (See
Equ. 1).

Rt =
1X

t=0

�trt (1)

The agent’s behavior is formalized by a policy ⇡ that maps
states S to a set of actions A where,

• States S = {s1, s2, . . . , N} are locations on the map.

• Actions A = {a1, a2, . . . ,M} are a move from one node
of the graph node to another node.

• Rewards R encodes the level of priority of a clinical team.

We use an action-value function Q⇤(s, a) to determine the
value of a given state. By maximizing that action-value func-
tion, we maximize the expected rewards over all a series of
actions following a policy ⇡.

Q⇤(st, at) = max
⇡

E[Rt|st, at,⇡] (2)
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To maximize the rewards over all actions, the optimal
action-value function obeys the Bellman Equation shown
below. As done commonly in the literature [44, 23, 12, 4],
we use Q-Learning [62], a model-free algorithm to teach that
robot a policy of what actions to take under certain penalties
and rewards.

Q⇤(st, at) = Est⇠S [rt + �max
at

Q⇤(st, at)|s, a] (4)

The inputs to our RL algorithm are a map of the environ-
ment and the location of the robot, clinical teams and their
priority, and the user (See Fig. 4). To represent the environ-
ment of the ED, we use a topological graph overlaid on our
map of the environment. The graph nodes represent way-
points throughout the ED such as the location of the robot
(blue), groups of clinicians talking in the hallway (yellow),
groups of clinicians working on life-critical patients (or-
ange), and the user that made a request for delivery (green),
as well as intersections in the hallways (black). The robot’s
position (blue) is the starting position and the user’s position
(green) is the goal location.

Figure 4: This is a simple example of an ED environment.
We model the environment with a graph. The robot (blue)
needs to deliver supplies to waypoints in the graph (black
nodes). It must navigate around both low priority groups
(brown) and high priority groups (orange). The ED staff
member who made the original request appears in green.
The goal of the delivery robot is to generate a path from
its current position to the ED staff requester without inter-
rupting the safety-critical team (Figure inspired by [19]).

Scenarios in the Emergency Department
We present three scenarios in the ED for our agent to learn
how to plan paths (See Figure 5). The level of difficulty of
the scenarios range from easy, medium, and hard in terms of
the number of clinical teams that the agent needs to consider
for its paths.

We trained a Q-Learning algorithm [62] over 700
episodes. Our agent takes an action using a ✏-greedy strat-
egy as commonly done in the literature [46]. This strategy
explores a policy by choosing a random action with proba-
bility 2 [0,1] We incorporate the patient priority in our re-
ward function as shown below. We use the following param-
eters to train a Q-Learning algorithm: rh = �1, rh = �5,
rh = 100 and d is the length of the path represented between
two states being considering. A negative reward means to
avoid a hallway in the ED and a positive reward repre-
sents the location of the goal. We use a discount coefficient
� = 0.8

r =

8
<

:

d+ rh, if high priority group
d+ rl, if low priority group
rg, if found goal

The resulting paths for our scenarios are shown in Fig-
ure 5. Our agent generated easy and medium as expected. In
the hard scenario, the agent generates behavior that depicts
the key challenge in our current work – that is, how can an
agent generate paths when the ED is when all paths have pa-
tients with various levels of acuity? When all paths contain
groups, both low priority and high priority, the agent never
finds a solution because the desired behavior must be cap-
tured by a more complex policy. This forms the basis of our
existing work as we design delivery robots for the ED under
conditions where all hallways can be cluttered and occupied
by clinical teams that perform procedures on highly acute
patients.


