
Experimental domains
Evaluate our methods in simulated scenarios and then hardware
• Simulated scenarios to test our ideas

• Search and rescue scenarios in Minecraft and coordinated resource gathering task

• Much easier to gather data and test methods in simulation

• Will also test ideas in standard partially observable benchmarks

• Test in hardware using simple manufacturing setting (below) as well as more complex (simulated) search 
and rescue domain with humans teaming with aerial and ground robots 

Coordinating and Incorporating Trust in Teams of Humans and Robots 
with Multi-Robot Reinforcement Learning Christopher Amato &  Stacy Marsella

Project overview
Goal: How can teams of robots learn 

to collaborate with humans given 
the partial observability and 
uncertainty in human interactions   
as well as the vast differences in 
reasoning between robots and 
humans?

We plan to develop:

1. Teams of robots learning to assist humans 
even with incorrect and incomplete 
human models

2. Teams of robots learning to coordinate and 
interact with humans using shared 
mental models

3. Teams of robots learning to coordinate and 
interact with humans by incorporating 
trust

4. Test in simulation and hardware in 
(simulated) search and rescue and other 
scenarios

Modeling and Learning Human Models
Overview
• Generate initial POMDP-based human models from simulation data

• Use these models in model-based (partially observable) reinforcement learning (RL)

• Improve models and solutions using Bayesian RL
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POMDPs

Generating initial model
• Will explore methods such as Automated Cognitive Behavior Analysis for generating from data with humans 
as part of the POMDP environment (based on [4])

• S, a set of states
• A, a set of actions 
• T, the state transition model:   
• R, the reward model: 
• O, a set of observations
• Z, the observation model:

Shared Mental Models
• Provide humans and robots with a shared model of the task as well as models of each other [6] by which 

to interpret and coordinate behavior
• Uses a hierarchical model over shared key coordination points
• Allows flexibility the low level but coordination and communication at the shared high level 
• Extend Bayesian RL methods above to incorporate hierarchies [from 2]
• Will be more scalable since they learn over fewer, higher-level actions and enable consistent mental 

models across the robots and people along with natural communication about those mental models.

Incorporating Trust and Interpretability
• True cooperation requires humans and robots to see each other as trusted teammates

• Therefore, we will incorporate trust into our POMDP models of human interaction

• And develop methods for improving trust by generating and sharing more interpretable robot solutions
Trust: Want to allow human teammates to appropriately judge the trustworthiness of robots using 

approaches based on the human response data and using Appraisal Theory to inform the design of 
trustworthy interaction and communication [5]

Interpretability: Interpretability in RL for HRI is important but general approaches don’t currently exist. We 
will develop high-level interpretable representations of our Bayesian RL methods and other solutions along 
with uncertainty estimates. 

Efficient Bayesian RL for POMDPs [1]
• Bayesian RL can optimally balance exploration and exploitation
• Ideal for online learning—optimally sample efficient so can learn from very few interactions with 

humans
• Can be computationally challenging, but building on our work combining deep RL with 

Bayesian RL to improve scalability [1] and exploiting structure in our human interaction 
domains

• Our approach, Bayes-adaptive deep dropout RL (BADDr), approximates the possible POMDP 
models with neural networks and approximates the Bayesian update with dropout in an 
ensemble of models
• Slower than tabular Bayesian RL in small domains
• But tabular Bayesian RL doesn’t scale
• Much faster than deep RL

Safe multi-agent reinforcement learning [3]
• (Multi-agent) RL is popular, but there are no safety guarantees
• We guarantee safety properties (e.g., no collisions) during 

training & execution with a shield
• Formalize safety using LTL
• Scalable by developing factored shields over problem
• Can be included into any MARL method
• Results show we can generate near-optimal solutions
without unsafe actions (collisions)

Current domains that will be used for testing (Minecraft and manufacturing) 

(a) Bayes comparison on tiger. (b) Bayes comparison on road race (3 lanes). (c) Bayes comparison on collision avoidance.

(d) Our work on road race (9 lanes). (e) Non-Bayes comparison on tiger. (f) Non-Bayes comparison on road race (3 & 9).

(g) Our work on gridverse. (h) Ablation (no model updates) on tiger. (i) Belief of tiger observation model.

Figure 2: Our work (blue) is competitive with FBA-POMCP in small problems (a & b), and can scale to larger instances (d & g).
Fig. (c) shows that BADDr struggles when prior certainty is crucial. Fig (e & f) compares with DPFRL, where BADDr shows both
a better initial performance due to exploiting the prior and better sample e�ciency. Dotted lines represent upper bound by
running POMCP on the true POMDP. Fig. (h) demonstrates BADDr (solid) requires far fewer models than an ablation method
that only re-weights models in its beliefs (dotted). Fig. (i) shows the belief in BADDr on tiger converges to the true value (0.85).

(as BADDr outperforms ‘FBA-POMCP: uncertain prior’). Note that
FBA-POMCP is given the correct (sparse) graphical model, which
is a strong assumption in practice that simpli�es the learning task.

On the 3-lanes road racing domain (�g. 2b) the di�erence be-
tween our work and BA-POMCP is nonexistent. This again con�rms
that BADDr is competitive with state-of-the-art BRL methods on
small problems which these methods are designed for and per-
form near optimal in. Unlike real applications, these problems are
compactly represented by tables and improvements are unlikely.

Larger domains. The advantage of our method becomes obvious
in larger problems. In the 9 lanes problem (�g. 2d), for instance, even
FBA-POMCP has 1013 entries, is unable represent this compactly,
and runs out of memory. But a dropout network of 512 nodes can
model the dynamics well enough: despite the increasing size of
the problem, the learning curve is similar to the smaller problem
(�g. 2b) and a similar amount of data is needed to nearly reach the
performance of POMCP in the POMDP. This suggests that there is
some pattern or generalization that BADDr is exploiting.
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