
Experimental domains
Evaluate our methods in simulated scenarios and then hardware
• Developed two simulated scenarios to facilitate data gathering and testing methods

• Coordinated search task in Minecraft and coordinated resource gathering task on the web

• Now exploring trade-offs between task complexity, mental model reasoning and performance over time 

• Will also test ideas in standard partially observable benchmarks

• Test in hardware using simple manufacturing setting (below) as well as more complex (simulated) search 
and rescue domain with humans teaming with aerial and ground robots 

Coordinating and Incorporating Trust in Teams of Humans and Robots 
with Multi-Robot Reinforcement Learning Christopher Amato &  Stacy Marsella

Project overview
Goal: How can teams of robots learn to 

collaborate with humans given the 
partial observability and uncertainty in 
human interactions   as well as the vast 
differences in reasoning between robots 
and humans?

We plan to develop:

1. Teams of robots learning to assist humans 
even with incorrect and incomplete 
human models

2. Teams of robots learning to coordinate and 
interact with humans using shared 
mental models

3. Teams of robots learning to interact with 
humans by incorporating trust

4. Test in simulation and hardware in 
multiple scenarios

Modeling and Learning Human Models
Overview
• Generate initial POMDP-based human models from simulation data

• Use these models in model-based (partially observable) reinforcement learning (RL)

• Improve models and solutions using Bayesian RL
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[3] Leveraging Fully Observable Policies for Learning under Partial Observability. Hai Nguyen, Andrea Baisero, Dian Wang, Christopher Amato, Robert Platt. In Proceedings of the 2022 Conference on Robot Learning (CoRL-22), December 2022. 
[4] Analyzing Human Negotiation using Automated Cognitive Behavior Analysis: The Effect of Personality. Pedro Sequeira and Stacy Marsella. In Proceedings of Cognitive Science, 2018.
[5] Operationalizing Theories of Theory of Mind: A Survey. Nik Gurney, Stacy Marsella, Volkan Ustun, David Pynadath. Operationalizing Theories of Theory of Mind: A Survey. Springer, AAAI-FSS 2021. 
[6] Effectiveness of Teamwork-Level Interventions through Decision-Theoretic Reasoning in a Minecraft Search-and-Rescue Task, Pynadath et al.,, . Extended Abstract, Proc. of 19th International Conference on Autonomous Agents and Multi-Agent System (AAMAS-23), May 20223.

POMDPs

Generating initial model
• Will explore methods such as Automated Cognitive Behavior Analysis for generating from data with humans 
as part of the POMDP environment (based on [4])

• S, a set of states
• A, a set of actions 
• T, the state transition model:   
• R, the reward model: 
• O, a set of observations
• Z, the observation model:

Shared Mental Models
• Provide humans and robots with a shared model of the task as well as models of each other [6] by which 

to interpret and coordinate behavior
• Uses a hierarchical model over shared key coordination points
• Allows flexibility the low level but coordination and communication at the shared high level 
• Extend Bayesian RL methods above to incorporate hierarchies
• Will be more scalable since they learn over fewer, higher-level actions and enable consistent mental 

models across the robots and people along with natural communication about those mental models.

Incorporating Trust and Interpretability
• True cooperation requires humans and robots to see each other as trusted teammates

• Therefore, we will incorporate trust into our POMDP models of human interaction

• And develop methods for improving trust by generating and sharing more interpretable robot solutions
Trust: Want to allow human teammates to appropriately judge the trustworthiness of robots using 

approaches based on the human response data and using Appraisal Theory to inform the design of 
trustworthy interaction and communication [5]

Interpretability: Interpretability in RL for HRI is important but general approaches don’t currently exist. We 
will develop high-level interpretable representations of our Bayesian RL methods and other solutions along 
with uncertainty estimates. 

Efficient Bayesian RL for POMDPs [1]

On-Robot Bayesian Reinforcement Learning for POMDPs [2]

Leveraging Fully Observable Policies for Learning under Partial Observability [3]

Current domains that will be used for testing (Minecraft and manufacturing) 

(a) Bayes comparison on tiger. (b) Bayes comparison on road race (3 lanes). (c) Bayes comparison on collision avoidance.

(d) Our work on road race (9 lanes). (e) Non-Bayes comparison on tiger. (f) Non-Bayes comparison on road race (3 & 9).

(g) Our work on gridverse. (h) Ablation (no model updates) on tiger. (i) Belief of tiger observation model.

Figure 2: Our work (blue) is competitive with FBA-POMCP in small problems (a & b), and can scale to larger instances (d & g).
Fig. (c) shows that BADDr struggles when prior certainty is crucial. Fig (e & f) compares with DPFRL, where BADDr shows both
a better initial performance due to exploiting the prior and better sample e�ciency. Dotted lines represent upper bound by
running POMCP on the true POMDP. Fig. (h) demonstrates BADDr (solid) requires far fewer models than an ablation method
that only re-weights models in its beliefs (dotted). Fig. (i) shows the belief in BADDr on tiger converges to the true value (0.85).

(as BADDr outperforms ‘FBA-POMCP: uncertain prior’). Note that
FBA-POMCP is given the correct (sparse) graphical model, which
is a strong assumption in practice that simpli�es the learning task.

On the 3-lanes road racing domain (�g. 2b) the di�erence be-
tween our work and BA-POMCP is nonexistent. This again con�rms
that BADDr is competitive with state-of-the-art BRL methods on
small problems which these methods are designed for and per-
form near optimal in. Unlike real applications, these problems are
compactly represented by tables and improvements are unlikely.

Larger domains. The advantage of our method becomes obvious
in larger problems. In the 9 lanes problem (�g. 2d), for instance, even
FBA-POMCP has 1013 entries, is unable represent this compactly,
and runs out of memory. But a dropout network of 512 nodes can
model the dynamics well enough: despite the increasing size of
the problem, the learning curve is similar to the smaller problem
(�g. 2b) and a similar amount of data is needed to nearly reach the
performance of POMCP in the POMDP. This suggests that there is
some pattern or generalization that BADDr is exploiting.
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Comparison with tabular Comparison with deep

Speed task in sim Speed task in hardware

• BADDr will still require too many interactions with people to be practical in HRI settings
• Often little uncertainty about robots but significant uncertainty about people---exploiting 

structure in human interaction domains
• Developed a factored approach that reasons about each separately to (very) efficiently learn
• Tested on tasks where ordering of tools or speed of people changes
• Can learn optimal solutions in 10 episodes (or less)

• Bayesian RL can optimally balance exploration and exploitation
• Ideal for online learning—optimally sample efficient so learn from very few interactions 
• Computationally challenging, but our work combines deep and Bayesian RL to improve scalability [1] 
• Bayes-adaptive deep dropout RL (BADDr), approximates the possible POMDP models with neural 

networks and approximates the Bayesian update with dropout in an ensemble of models
• Slower than tabular Bayesian RL in small domains
• But tabular Bayesian RL doesn’t scale
• Much faster than deep RL
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• Also improving performance in non-Bayesian partially observable RL
• Here, use a MDP-based expert to help
• But an MDP won’t do information gathering and could perform worse
• We maximize RL return while minimizing divergence between POMDP and 

MDP policies
• Performs better than other methods

entropy term,90
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where H(µ(s)) = Ea⇠µ(s) [� logµ(a | s)] is the entropy of policy µ at the given state s, and ↵ > 091

is a trade-off coefficient which determines the relative importance between the RL objective and the92

entropy-maximization objective. The entropy term can be interpreted as a supplementary pseudo-93

reward given to the agent, which is high for high-entropy policies and low for low-entropy policies.94

Therefore, the agent will seek not only to maximize the entropy of the policy in the visited states but95

also to visit states associated with a high-entropy policy.96

In practice, SAC is an off-policy learning algorithm which employs a replay buffer containing past97

transitions D = {(s, a, r, s0)i}Ni=0. SAC trains a parametric policy model µ✓ : S ! �A, and a98

parametric value model Q� : S ⇥A ! R. The policy model is trained by maximizing99

Jµ(✓) = Es⇠D,a⇠µ✓ [Q�(s, a)� ↵ logµ✓(a | s)] , (2)

while the value model is trained to minimize100
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where Q�̄ is a frozen target model that is updated at a slower pace than Q�, to improve stability.101

Hyperparameter ↵ plays a central role in SAC, determining how much high-entropy states are102

preferred to pure rewards. Choosing a reasonable ↵ can be difficult since it is not directly inter-103

pretable, and a good value depends dynamically on the current policy’s expected returns and entropy.104

Haarnoja et al. [27] proposed to automatically adjust ↵ by minimizing its own objective,105

J↵(↵) = ↵Es⇠D,a⇠µ✓(s) [� logµ✓(s)]� ↵H̄ , (5)

where H̄ is a given target entropy. In practice, Equation (5) modulates ↵ such that it is increased if106

the current policy entropy is lower than the target entropy, and vice versa. In contrast to choosing a107

value of ↵, choosing a value of H̄ is much simpler since it is broadly interpretable as the logarithm108

of the number of actions that we want the max-entropy policy to consider in an average state.109

3.3 Soft Actor-Critic for Partially Observable Control110

Although primarily designed for FO control problems and state policies µ, SAC can be easily111

adapted to handle PO control problems and history policies ⇡, like most (if not all) model-free112

learning algorithms. Two main changes need to take place for SAC: First, all appearances of a state113

s in the equations and models of SAC must be replaced with a respective history h. This also im-114

plies the use of a recurrent neural network component in the overall architecture of policy and value115

models, e.g., an LSTM [28] or a GRU [29]. Second, the replay buffer must be structured in order to116

contain and extract (truncated) episodes rather than individual transitions.117

4 Cross-Observability Soft Imitation Learning118

SAC is based on the premise of max-entropy control and is designed to find policies that solve119

the control task while pertaining to high entropy. This is achieved by extending the standard RL120

objective with an entropy component which not only pushes the policy model to be more stochastic121

for any given state but also acts as a pseudo-reward that pushes the policy to visit future states where122

the policy can be more stochastic. Inspired by this dual effect, we aim to employ a similar technique123

to exploit FO expert knowledge to train a PO agent.124

Consider an offline training scenario where an FO expert µ is available, e.g., obtained via a planning125

procedure, a pre-trained model, or a model trained jointly with the PO agent. We propose formu-126

lating a pseudo-reward for the PO agent ⇡ based on the expected similarity with the FO agent µ,127

expressed as the following cross-observability soft imitation learning (COSIL) objective,128

J⇡ = E
" 1X

t=0
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#
, (6)

3
Where D is e.g., KL divergence
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