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Cyberphysical systems

Cyber-physical systems (CPS)

Engineered systems whose operations are monitored, coordinated,
controlled and integrated by a computing and communication core

(P' Antsaklis) cyber-infrastructure
Engineered system = Distribution network
Coordination = Load balancing
Cyber infrastructure = measurement scheduling

control computation

actuation scheduling

robustness to delays, quantization
poor clock synchronization



Distribution network

x = Bu
z = BTx
where
@ x; € R, stored quantity at the
node i€l :={1,2,...,n}
o uy € R flow through
edge k € E:={1,2,...,m}
@ B incidence matrix of undirected graph G

Load balancing

Design edge controllers uy, k € E, such that
@ uy depends on zj := X; — X;
@ zx »0forall ke E




Why (still) studying load balancing?

@ It is a prototypical problem:
solutions can be extended to more complex scenarios
@ It is useful in many application fields:
e robotic networks
@ sensors networks
o data networks
e opinion dynamics

@ It is well studied:

Theorem (Standard consensus)

If the graph G is connected, the control law u, = —z, guarantees that
tlim z(t) = 0 for all k. Moreover
— 00

xi(t) = Z@




Coordination in a cyber-physical environment

The algorithm requires continuous acquisition of information from
neighbors

This is too demanding in a cyber-physical environment!

We instead want a scenario in which
@ sensors collect information only upon need

@ the continuous-time systems “naturally” interacts with the
discrete-time information acquisition

o the whole system is robust against network uncertainties

(delays, poor synchronization of local clocks, limited data rate
communication, noise)
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A hybrid coordination algorithm |

State variables (i € /, k € E)
@ node quantities: x; € R
o flows: wuy € {—1,0,+1} (ternary controls)
@ local clock variables: 8, € R

Continuous evolution when no information exchange occurs

Xi = > kek bikuk
i =0
O = —1

Jumps occur at every t such that the set

I(0,t) ={k€ E : 9, =0}#0



A hybrid coordination algorithm ||

Discrete evolution: how the exchange of information affects the systems

(xi(tT) = xi(t) Viel

—sign_(zx(t)) ifkeZ(6,t)

ug(t) otherwise

Bu(t") = £ (zk(t)) iflf €Z(0,t)
Ok(t) otherwise

uk(t"") =

. sign(z) if|z] >«
@ sSIign_(\z) =
gn<() {0 otherwise

@ ¢ > 0 is a sensitivity parameter

@ a € (0,1) is a robustness parameter

Note: the law uy = —sign(zx) is known to imply finite-time convergence
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A hybrid coordination algorithm Il

Next sampling time

Ou(th) = f&(zi(t)) ifkeZ(0,t)
) Ox(t) otherwise

where o
| 2] if [z¢] > €
2(deg; + deg;)
e Zi) = ! J
i (20) $E otherwise
2(deg; + degj)
so that

—thk > _ac
E - 2degmax
o sign(z«(t)) constant on [t tf, ]

o dwell time property holds: té‘H

o c-deadzone to prevent Zeno



Hybrid coordination algorithm

Protocol
1. initialization: for all k € E, set 6,(0) =0, uk(0) € {—1,0,+1};
2: for all i € | do
3 forall k € E; do

4: while 9k(t) > 0 do

5: i applies the control by ug(t);

6: end while

7: if 6x(t) =0 then

8: k polls nodes i, and collects the information z(t);
9: k updates O,(tT) = {*(z(t));

10: k updates uy(t1) = sign_(zx(t));

11: end if

12:  end for

13: end for




Main result

Theorem (Practical balancing)

For every initial condition X, let x(t) be the solution to the Hybrid
Coordination Algorithm such that x(0) = X.

Then x(t) converges in finite time to a point x* belonging to the set

E={xeR" : ||B"x||loo <€}

z

Time cost (time to converge)
. d 1
=inf{t >0 : x(t)e &} < MH ||2
Communication cost (# updates to converge)

. 4d d 1
Co— malx max{k t;( < T} < egmax( egmax+ )H ||2
e g2
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Main result

Theorem (Practical balancing)

For every initial condition X, let x(t) be the solution to the Hybrid
Coordination Algorithm such that x(0) = X. Then x(t) converges in finite
time to a point x* belonging to the set

E={xeR" : ||B x||lso <&}

z

Proof Based on a Lyapunov-like argument for hybrid systems with
V(x) =x"x

It satisfies

V(t) < _ Z |Zk(2té<)‘

kEE:|z((th)|>e
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Simulations
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Sample evolutions of states x and corresponding controls v on a ring with
n =15 nodes, ¢ = 0.02
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Capacity constraints

@ Ternary controllers satisfy edge capacity constraints

@ Node capacity constraints can also be satisfied

Proposition
Let

0 < cmin < x7(0) < cmax, foralliel.

where 0 < ¢min < Cmax are bounds on the capacities of the nodes.
Then the solution x(t) to the Hybrid Coordination Algorithm starting from
x(0) satisfies

0 < cmin < Xi(t) < Cmax, foralliel,

for all t > 0.
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Asymptotical coordination
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Asymptotical coordination: idea

Accuracy of practical balancing depends on ¢
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n=20,c =001 n=20,c = 0.001

Practical convergence may not be satisfactory: can we do better?

15/21



Asymptotical coordination: idea

Underlying idea
@ ¢ is a measure of the size of the region of convergence
@ To achieve asymptotical coordination we let £(t) — 0

@ To prevent Zeno, we must slow down both the information request
process and the velocity of the systems

| Information request | System velocity |

7(1,5)&“(4) () Sy bikti

£(t)

v(t)

in a consistent way, namely >c V>0
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Asymptotical coordination: system

Continuous-time dynamics

Xi = Y(t) D oxee bikuk
i =0
O = —1

Discrete-time dynamics

xi(th) = x(t) Viel
ue(tt) = {Sig”sm (zk(t)) ifkeZ(0,t)
uk(t) otherwise

Hk(t+):{ T fe(z(t) ifk e Z(0,1)

0x(t) otherwise
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Asymptotical coordination: results

Theorem (Asymptotical consensus)

Let x(-) be the solution to the Hybrid Asymptotical Coordination
Algorithm. Then, for every initial condition X € R" there exists € R such

+o0
that tim xj(t) = B for all i € I, if and only if/ v(s)ds is divergent
o0 0

o Condition fo v(s)ds = +o0 is necessary because a “persistent
excitement” is needed to ensure convergence

@ Dwell time property is satisfied

a  e(tf
4'dmax ')’( é()

@ Robustness: no need to have the same ~,e: we can use different
Yk Ek

~—

1

k k k

t —t, > ——f t > >cC
41 ! = ’}/(tk) k(X( f)) - -

(4
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Simulations
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Sample evolutions of x and v on a ring with n =5, &(t) = (I)-T(:?’

y(t) = $2: dwell time is 0.025
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Conclusion
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Conclusions

Load balancing in a distribution network

Coarse controllers and occasional information collection

Protocols for practical & asymptotical convergence

Robustness (delays, quantization, clock skews), guaranteed dwell-time
Network of hybrid systems that synchronize asynchronously

C. De Persis and P. Frasca. Robust self-triggered coordination with ternary controllers.

IEEE Transactions on Automatic Control, provisionally accepted. Available at
http://arxiv.org/abs/1205.6917
Work in progress

QUantized Information and Control
for formation Keeping (QUICK)

. w = o(w)
{)z< B gl;x x = f(x)+ Bu+ Pw
- z = BTx
_ n o= @, z)
YT { = V(y,2)
—
ND.
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