Coordination control in a cyberphysical environment¹

Claudio De Persis

Groningen Center for Systems and Control University of Groningen

Workshop on the Control of Cyber-Physical Systems
University of Notre Dame London Centre
October 20-21, 2012

¹Joint work with Paolo Frasca - Politecnico di Torino

Cyberphysical systems

Cyber-physical systems (CPS)

Engineered systems whose operations are monitored, coordinated, controlled and integrated by a computing and communication core (P. Antsaklis)

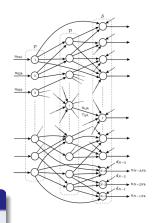
cyber-infrastructure

Distribution network

$$\dot{x} = Bu$$
 $z = B^T x$

where

- $x_i \in \mathbb{R}$, stored quantity at the node $i \in I := \{1, 2, ..., n\}$
- $u_k \in \mathbb{R}$ flow through edge $k \in E := \{1, 2, \dots, m\}$
- B incidence matrix of undirected graph G



Load balancing

Design edge controllers u_k , $k \in E$, such that

- u_k depends on $z_k := x_i x_j$
- $z_k \to 0$ for all $k \in E$

Why (still) studying load balancing?

- It is a prototypical problem: solutions can be extended to more complex scenarios
- It is useful in many application fields:
 - robotic networks
 - sensors networks
 - data networks
 - opinion dynamics
- It is well studied:

Theorem (Standard consensus)

If the graph G is connected, the control law $u_k=-z_k$ guarantees that $\lim_{t\to\infty}z_k(t)=0$ for all k. Moreover

$$x_i(t) \rightarrow \sum_{j=1}^n \frac{x_j(0)}{n}$$

Coordination in a cyber-physical environment

The algorithm requires continuous acquisition of information from neighbors

This is too demanding in a cyber-physical environment!

We instead want a scenario in which

- sensors collect information only upon need
- the continuous-time systems "naturally" interacts with the discrete-time information acquisition
- the whole system is robust against network uncertainties (delays, poor synchronization of local clocks, limited data rate communication, noise)

A hybrid coordination algorithm I

State variables $(i \in I, k \in E)$

- node quantities: $x_i \in \mathbb{R}$
- flows: $u_k \in \{-1, 0, +1\}$ (ternary controls)
- local clock variables: $\theta_k \in \mathbb{R}$

Continuous evolution when no information exchange occurs

$$\begin{cases} \dot{x}_i = \sum_{k \in E} b_{ik} u_k \\ \dot{u}_k = 0 \\ \dot{\theta}_k = -1 \end{cases}$$

Jumps occur at every t such that the set

$$\mathcal{I}(\theta,t) = \{k \in E : \theta_k = 0\} \neq \emptyset$$

A hybrid coordination algorithm II

Discrete evolution: how the exchange of information affects the systems

$$\begin{cases} x_i(t^+) = x_i(t) & \forall i \in I \\ u_k(t^+) = \begin{cases} -\operatorname{sign}_{\varepsilon}(z_k(t)) & \text{if } k \in \mathcal{I}(\theta, t) \\ u_k(t) & \text{otherwise} \end{cases} \\ \theta_k(t^+) = \begin{cases} f_k^{\alpha}(z_k(t)) & \text{if } k \in \mathcal{I}(\theta, t) \\ \theta_k(t) & \text{otherwise} \end{cases}$$

- $\operatorname{sign}_{\varepsilon}(z) = \begin{cases} \operatorname{sign}(z) & \text{if } |z| \geq \varepsilon \\ 0 & \text{otherwise} \end{cases}$
- $\varepsilon > 0$ is a *sensitivity* parameter
- $\alpha \in (0,1)$ is a *robustness* parameter

Note: the law $u_k = -\operatorname{sign}(z_k)$ is known to imply finite-time convergence

A hybrid coordination algorithm III

Next sampling time

$$heta_k(t^+) = egin{cases} f_k^lpha(z_k(t)) & ext{if } k \in \mathcal{I}(heta,t) \ heta_k(t) & ext{otherwise} \end{cases}$$

where

$$f_k^{\alpha}(z_k) = \begin{cases} \frac{\alpha}{2(\deg_i + \deg_j)} |z_k| & \text{if } |z_k| \ge \varepsilon \\ \frac{\alpha}{2(\deg_i + \deg_j)} \varepsilon & \text{otherwise} \end{cases}$$

so that

- **dwell time** property holds: $t_{\ell+1}^k t_{\ell}^k \ge \frac{\alpha \varepsilon}{2 \deg_{\max}}$
- $\operatorname{sign}(z_k(t))$ constant on $[t_\ell^k, t_{\ell+1}^k]$
- ε -deadzone to prevent Zeno

Hybrid coordination algorithm

Protocol

```
1: initialization: for all k \in E, set \theta_k(0) = 0, u_k(0) \in \{-1, 0, +1\};
 2: for all i \in I do
       for all k \in E_i do
 3:
          while \theta_k(t) > 0 do
 4:
              i applies the control b_{ik}u_k(t);
 5:
          end while
 6:
         if \theta_k(t) = 0 then
 7:
             k polls nodes i, j and collects the information z_k(t);
 8.
             k updates \theta_k(t^+) = f_k^{\alpha}(z_k(t));
 9.
             k updates u_k(t^+) = \operatorname{sign}_{\varepsilon}(z_k(t));
10:
          end if
11:
       end for
12:
13: end for
```

Main result

Theorem (Practical balancing)

For every initial condition \bar{x} , let x(t) be the solution to the Hybrid Coordination Algorithm such that $x(0) = \bar{x}$.

Then x(t) converges in finite time to a point x^* belonging to the set

$$\mathcal{E} = \{ x \in \mathbb{R}^n : ||\underline{\mathcal{B}}^T \underline{x}||_{\infty} < \varepsilon \}$$

Time cost (time to converge)

$$\mathcal{T} := \inf\{t \geq 0 : x(t) \in \mathcal{E}\} \leq \frac{(\deg_{\mathsf{max}} + 1)}{\varepsilon} ||\bar{x}||^2$$

Communication cost (# updates to converge)

$$C := \max_{i \in I} \max\{k \ : \ t_k^i \leq T\} \leq \frac{4 \deg_{\max}(\deg_{\max} + 1)}{\varepsilon^2} ||\bar{x}||^2$$

Main result

Theorem (Practical balancing)

For every initial condition \bar{x} , let x(t) be the solution to the Hybrid Coordination Algorithm such that $x(0) = \bar{x}$. Then x(t) converges in finite time to a point x^* belonging to the set

$$\mathcal{E} = \{ x \in \mathbb{R}^n : ||\underline{\mathcal{B}}^T x||_{\infty} < \varepsilon \}$$

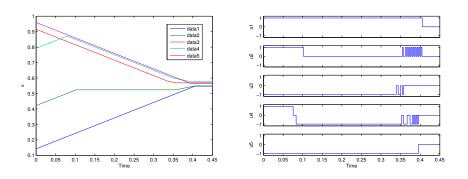
Proof Based on a Lyapunov-like argument for hybrid systems with

$$V(x) = x^T x$$

It satisfies

$$\dot{V}(t) \leq -\sum_{k \in E: |z_k(t_\ell^k)| \geq \varepsilon} \frac{|z_k(t_\ell^k)|}{2}$$

Simulations



Sample evolutions of states x and corresponding controls u on a ring with n=5 nodes, $\varepsilon=0.02$

Capacity constraints

- Ternary controllers satisfy edge capacity constraints
- Node capacity constraints can also be satisfied

Proposition

Let

$$0 \leq c_{\mathsf{min}} \leq x_i(0) \leq c_{\mathsf{max}}, \quad \text{for all } i \in I.$$

where $0 \le c_{\min} < c_{\max}$ are bounds on the capacities of the nodes. Then the solution x(t) to the Hybrid Coordination Algorithm starting from x(0) satisfies

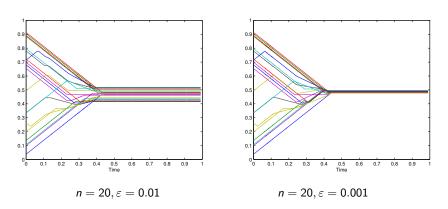
$$0 \le c_{\min} \le x_i(t) \le c_{\max}$$
, for all $i \in I$,

for all t > 0.

Asymptotical coordination

Asymptotical coordination: idea

Accuracy of practical balancing depends on ε



Practical convergence may not be satisfactory: can we do better?

Asymptotical coordination: idea

Underlying idea

- ullet is a measure of the size of the region of convergence
- To achieve asymptotical coordination we let $\varepsilon(t) \to 0$
- To prevent Zeno, we must slow down both the information request process and the velocity of the systems

Information request	System velocity
$\frac{1}{\gamma(t)}f_k^\alpha(z_k)$	$\gamma(t)\sum_{k\in E}b_{ik}u_k$

in a consistent way, namely $\frac{arepsilon(t)}{\gamma(t)} \geq c \quad orall t \geq 0$

Asymptotical coordination: system

Continuous-time dynamics

$$\begin{cases} \dot{x}_i = \gamma(t) \sum_{k \in E} b_{ik} u_k \\ \dot{u}_k = 0 \\ \dot{\theta}_k = -1 \end{cases}$$

Discrete-time dynamics

$$\begin{cases} x_i(t^+) = x_i(t) & \forall i \in I \\ u_k(t^+) = \begin{cases} \operatorname{sign}_{\varepsilon(t)}(z_k(t)) & \text{if } k \in \mathcal{I}(\theta, t) \\ u_k(t) & \text{otherwise} \end{cases} \\ \theta_k(t^+) = \begin{cases} \frac{1}{\gamma(t)} f_k^{\alpha}(z_k(t)) & \text{if } k \in \mathcal{I}(\theta, t) \\ \theta_k(t) & \text{otherwise} \end{cases}$$

Asymptotical coordination: results

Theorem (Asymptotical consensus)

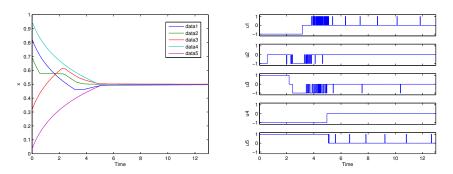
Let $x(\cdot)$ be the solution to the Hybrid Asymptotical Coordination Algorithm. Then, for every initial condition $\bar{x} \in \mathbb{R}^n$ there exists $\beta \in \mathbb{R}$ such that $\lim_{t \to \infty} x_i(t) = \beta$ for all $i \in I$, if and only if $\int_0^{+\infty} \gamma(s) ds$ is divergent

- Condition $\int_0^{+\infty} \gamma(s) ds = +\infty$ is necessary because a "persistent excitement" is needed to ensure convergence
- Dwell time property is satisfied

$$t_{\ell+1}^k - t_{\ell}^k \ge \frac{1}{\gamma(t_{\ell}^k)} f_k(x(t_{\ell}^k)) \ge \frac{\alpha}{4d_{\mathsf{max}}} \frac{\varepsilon(t_{\ell}^k)}{\gamma(t_{\ell}^k)} \ge c'$$

• Robustness: no need to have the same γ, ε : we can use different γ_k, ε_k

Simulations



Sample evolutions of x and u on a ring with n=5, $\varepsilon(t)=\frac{0.05}{1+t}$, $\gamma(t)=\frac{0.25}{1+t}$: dwell time is 0.025

Conclusion

Conclusions

- Load balancing in a distribution network
- Coarse controllers and occasional information collection
- Protocols for practical & asymptotical convergence
- Robustness (delays, quantization, clock skews), guaranteed dwell-time
- Network of hybrid systems that synchronize asynchronously

C. De Persis and P. Frasca. Robust self-triggered coordination with ternary controllers.

IEEE Transactions on Automatic Control, provisionally accepted. Available at

http://arxiv.org/abs/1205.6917

Work in progress

$$\begin{cases} \dot{x} = Bu \\ z = B^{T}x \end{cases} \begin{cases} \dot{w} = \sigma(w) \\ \dot{x} = f(x) + Bu + Pw \\ z = B^{T}x \end{cases}$$

$$u = -z \end{cases} \begin{cases} \dot{\eta} = \Phi(\eta, z) \\ u = \Psi(\eta, z) \end{cases}$$

QUantized Information and Control for formation Keeping (QUICK)

