Frontier: Collaborative Research: Correct-by-Design Control Software Synthesis for Highly Dynamic Systems

Jessy Grizzle, Aaron Ames, Hartmut Geyer, Huei Peng, and Paulo Tabuada

A Classical to Modern Transition

- Classical control geared toward
 - Asymptotically stabilize a point or set
 - Track a set of trajectories
 - Create and stabilize periodic behavior
- Modern engineered systems
 - require the composition of these classical components to meet higher level objectives
- Design requirements typically written in plain English, specifying desired sequence of intermediate objectives
 - start-up and shut-down
 - different modes of operation (e.g., adaptive cruise controllers)
 - priority requirements among conflicting objectives (e.g., safety critical components always take precedence over comfort)

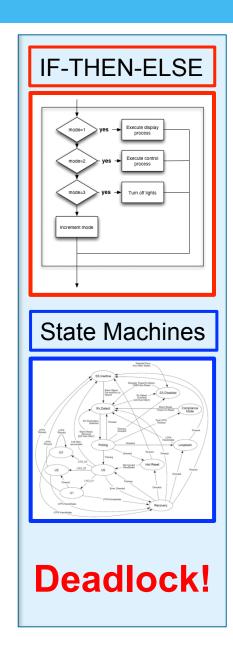
CPS

A Classical to Modern Transition

 Outstanding engineers write software attempting to <u>choreograph</u> a suite of classical controllers...

...to produce complex controllers fulfilling all the design requirements.

- At least we hope!
- Help! Verification required!



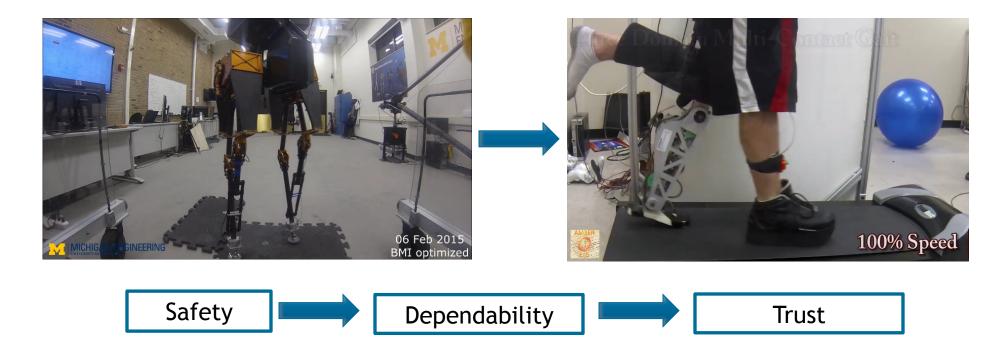
Big Picture: Our Project

- "Choreography" in English replaced by a specification in a formal logic (LTL)
- From specification, synthesize control software
 - that is correct by construction.
 - for systems of ODEs
 - with time-critical safety requirements...
- Evaluate on hardware---robotics and automotive

Big Picture: Bipedal Locomotion

Robotics: bipedal locomotion

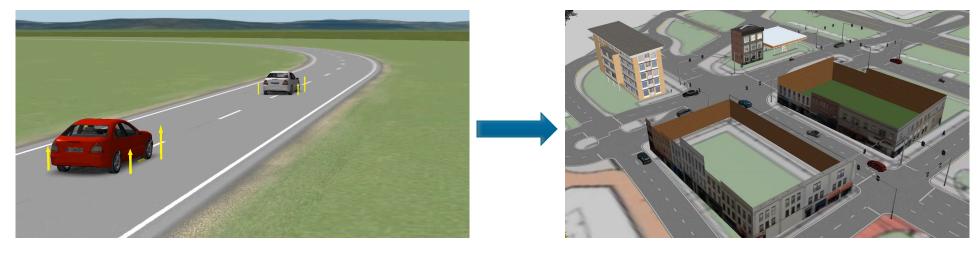
Understanding how to formally realize guarantees on dynamic locomotion can allow for richer interactions between humans and robots



Big Picture: Automotive

Automotive: driver convenience and safety

Understanding how to formally realize guarantees on automotive systems can lead to dependability and trust in smart cities



Industrial Partners

Beginning discussions with Eaton Corp.

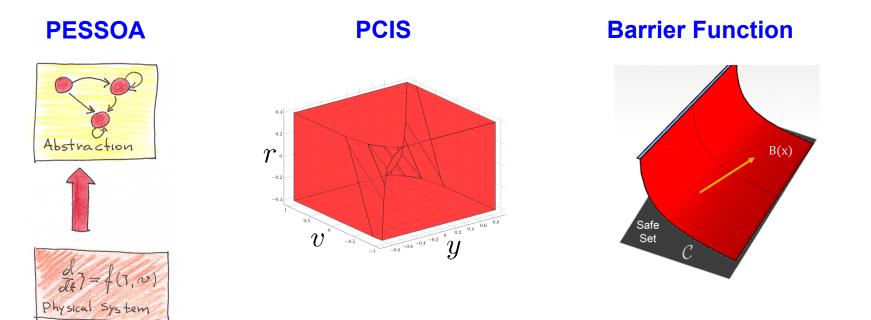
Input from Ford and Toyota

Suggested automotive problems

- Adaptive Cruise Control (ACC)
- Lane Keeping
- Obstacle avoidance
- Composition

Approaches we are following

- PESSOA ← Abstraction via spatial and temporal discretization
- PCIS ← Linear models and controlled-invariant polyhedra



Features One May Care About

	PCIS	Pessoa	Barrier fun.
Complex specifications	TBD	Yes	TBD
Turn-key automation	For LTI	Almost	TBD
Approximation bounds	For LTI	For δ -ISS	Maybe
Parameter tuning	Yes	Some	Yes
Nonlinear	Not now	Yes	Yes
High-dimensional	Not now	Not now	Yes
Termination guarantees	Approximate	Yes	N/A

Supervisor of legacy software	Yes	Yes	Yes	
-------------------------------	-----	-----	-----	--

Advances in Control Barrier Functions

Aaron Ames, Xiangru Xu Jessy Grizzle, Paulo Tabuada

Motivation: Performance & Safety

Goal:

Unify **control objectives** with **safety specifications** in a formal and provably correct manner

Main Idea:

Define **control barrier functions** that allow for the unification in an optimization-based framework

Control Barrier Functions: Last Year

Control Barrier Functions: provably ensure satisfaction of safety specifications

- Define the safe set, $\ensuremath{\mathcal{C}}$
- Consider a **barrier** function:

$$\inf_{x \in \text{Int}(\mathcal{C})} B(x) \ge 0, \qquad \lim_{x \to \partial \mathcal{C}} B(x) = \infty.$$

• Ensure invariance of the safe set through the requirement:

$$\inf_{u \in \mathcal{U}} \dot{B}(x, u) \le \frac{\gamma}{B(x)}$$

Control Barrier Functions: Last Year

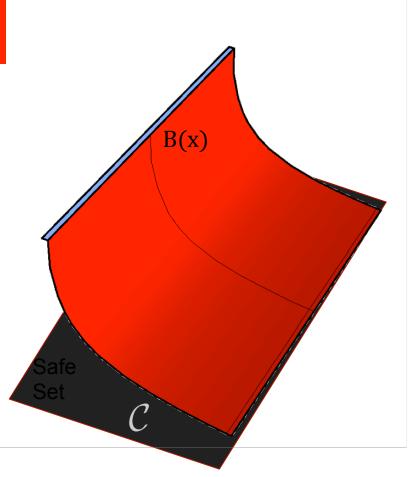
Reciprocal Barrier and Control Barrier Function

$$\inf_{x \in \text{Int}(\mathcal{C})} B(x) \ge 0, \qquad \lim_{x \to \partial \mathcal{C}} B(x) = \infty.$$

and

$$\inf_{u \in \mathcal{U}} \dot{B}(x, u) \le \frac{\gamma}{B(x)}$$

then the set C is forward invariant, i.e., the set is provably safe.



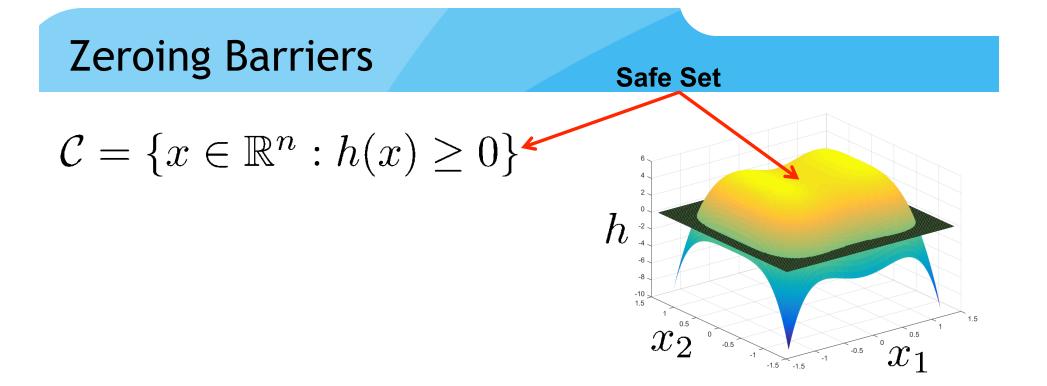
Starting Point for a New Barrier Function

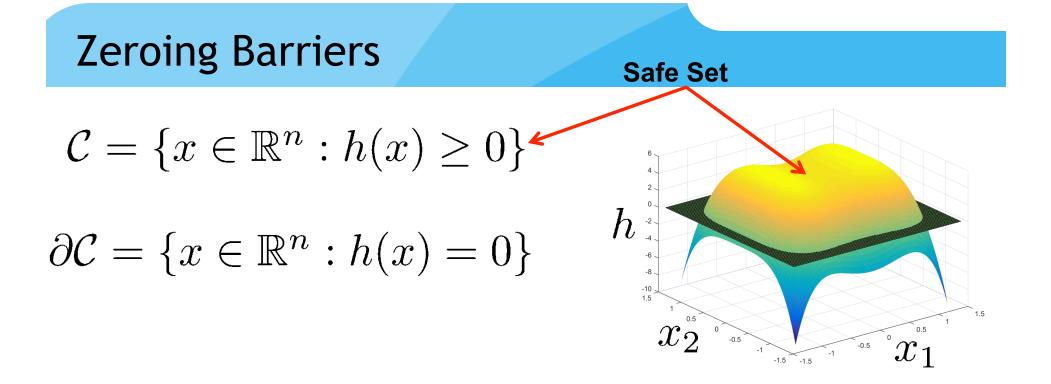
• Generality: $\inf_{u \in U} \dot{B}(x, u) \le \frac{\gamma}{B(x)} \Rightarrow \mathcal{C}$ safe

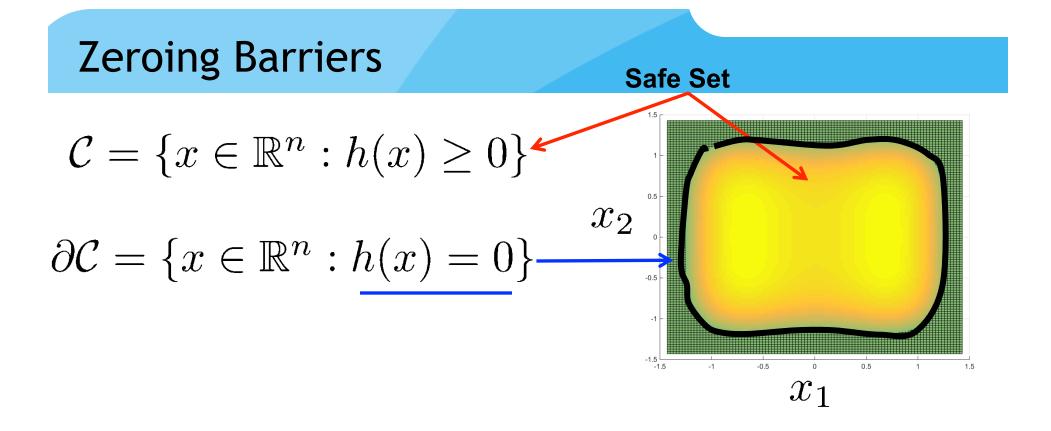
The converse?

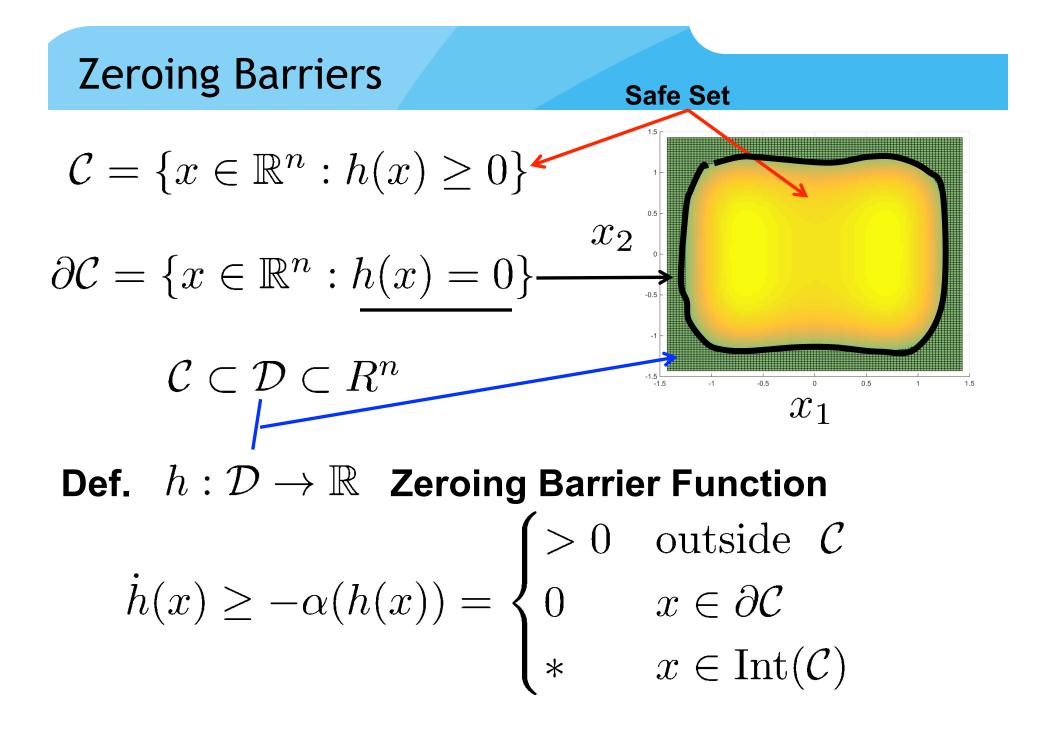
$$\mathcal{C} \text{ safe } \Rightarrow \inf_{u \in U} \dot{B}(x, u) \le \frac{\gamma}{B(x)}$$
?

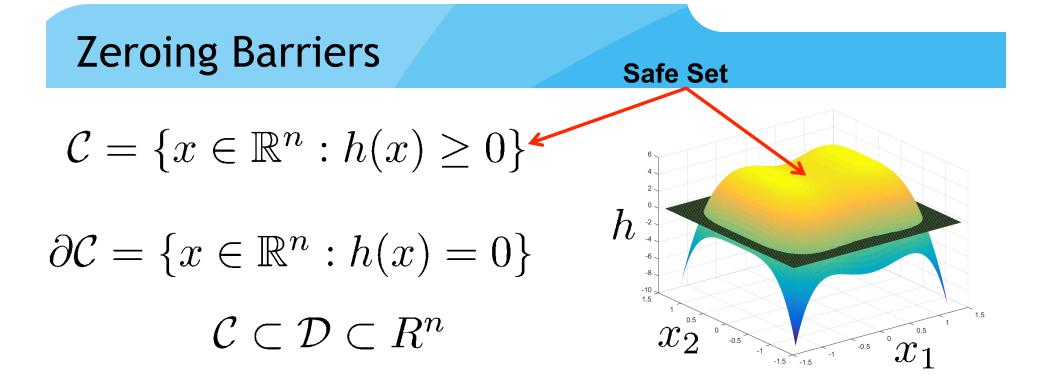
- Why important? Less restrictive safety condition implies more freedom for control performance.
- Robustness: Model uncertainty [rogue traffic] may force the system out of the safe set. What happens?











 $\begin{array}{ll} \operatorname{Def.} & h: \mathcal{D} \to \mathbb{R} & \operatorname{Zeroing} \operatorname{Control} \operatorname{Barrier} \operatorname{Function} \\ & \inf_{u \in U} \dot{h}(x, u) \geq -\alpha(h(x)) = \begin{cases} > 0 & \text{outside } \mathcal{C} \\ 0 & x \in \partial \mathcal{C} \\ * & x \in \operatorname{Int}(\mathcal{C}) \end{cases} \end{array}$

Zeroing Barriers

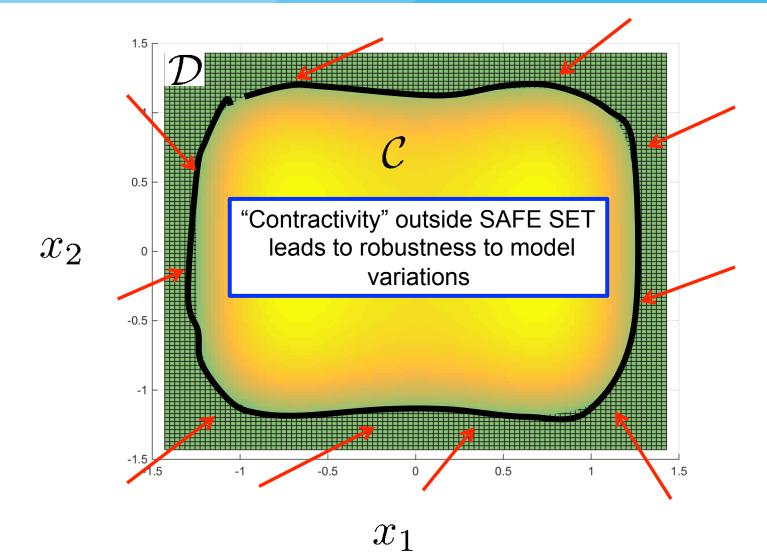
Theorem: Selecting control inputs according to

$$\inf_{u \in U} \dot{h}(x, u) \ge -\alpha(h(x))$$

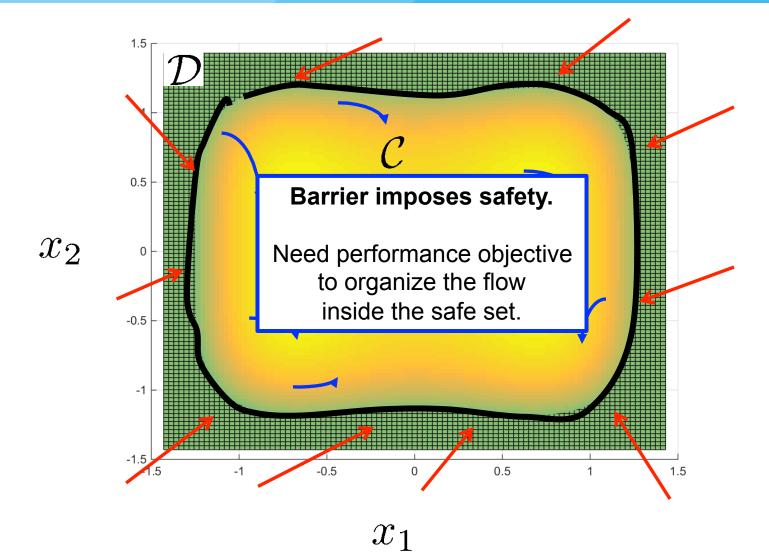
guarantees forward invariance of C and hence, safety.

Def. $h: \mathcal{D} \to \mathbb{R}$ Zeroing Control Barrier Function $\inf_{u \in U} \dot{h}(x, u) \ge -\alpha(h(x)) = \begin{cases} > 0 & \text{outside } \mathcal{C} \\ 0 & x \in \partial \mathcal{C} \\ * & x \in \text{Int}(\mathcal{C}) \end{cases}$

Zeroing Barriers

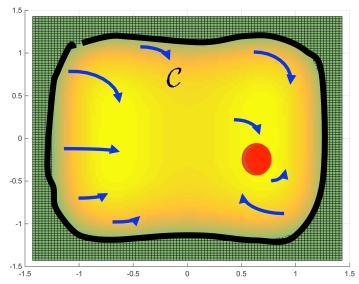


Zeroing Barriers

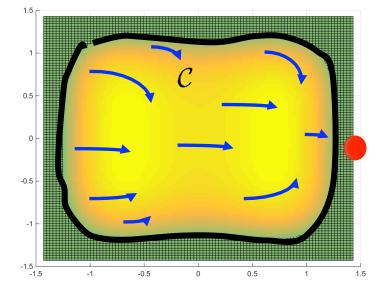


Safety + Performance: 2 Cases

Performance Objective In Safe Set



Performance Objective not in Safe Set



How to combine both cases in a unified framework?

Our answer: Quadratic Program

Multi-Objective QP

Safe Set & Barrier

$$\mathcal{C} = \{ x \in \mathbb{R}^n : h(x) \ge 0 \}$$

Control System

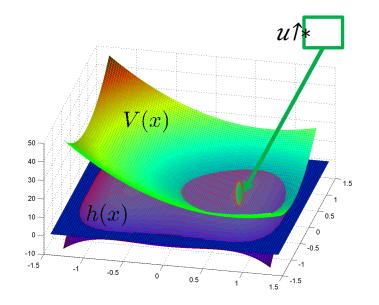
$$\dot{x} = f(x) + g(x)u$$

u*(x) = smallest control input assuring safety

$$\dot{h}(x,u) \ge -\alpha(h(x))$$

...and performance as "close as possible"

$$\dot{V}(x,u) \approx -cV(x)$$



CPS

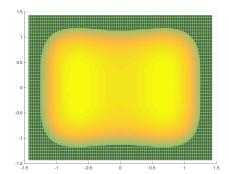
First: QP for Safety Only

Safe Set & Barrier

$$\mathcal{C} = \{ x \in \mathbb{R}^n : h(x) \ge 0 \}$$

Control System

 $\dot{x} = f(x) + g(x)u$



Smallest control input assuring safety

$$u^*(x) = \underset{u \in \mathbb{R}^m}{\operatorname{argmin}} \quad u^{\top}u$$

s.t. $\dot{h}(x, u) \ge -\alpha(h(x))$
 $\dot{h}(x, u) = L_f h(x) + L_g h(x)u$

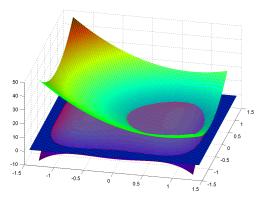
Now: QP for Safety and Performance

Safe Set & Barrier

$$\mathcal{C} = \{ x \in \mathbb{R}^n : h(x) \ge 0 \}$$

Control System

$$\dot{x} = f(x) + g(x)u$$



Smallest control input assuring safety

$$u^*(x) = \underset{u \in \mathbb{R}^m}{\operatorname{argmin}} \quad u^\top u$$

s.t. $L_f h(x) + L_g h(x) u \ge -\alpha(h(x))$

...AND performance as "close as possible"

$$\dot{V}(x,u) \approx -cV(x)$$

CPS

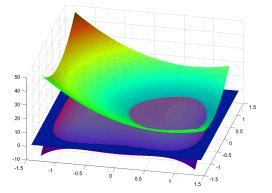
Multi-Objective QP

Safe Set & Barrier

$$\mathcal{C} = \{ x \in \mathbb{R}^n : h(x) \ge 0 \}$$

Control System

$$\dot{x} = f(x) + g(x)u$$



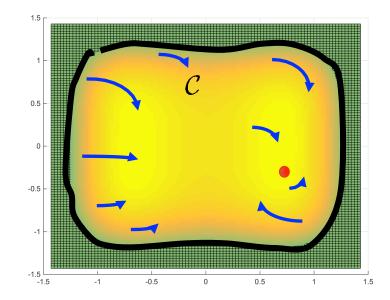
Smallest control input assuring safety + performance

$$u^*(x) = \underset{u \in \mathbb{R}^m}{\operatorname{argmin}} \quad u^\top u + 10^2 \delta^2$$

s.t.
$$L_f h(x) + L_g h(x) u \ge -\alpha(h(x))$$

 $L_f V(x) + L_g V(x) u \le -cV(x) + \delta$

Multi-Objective QP



Feasible w/o relaxation

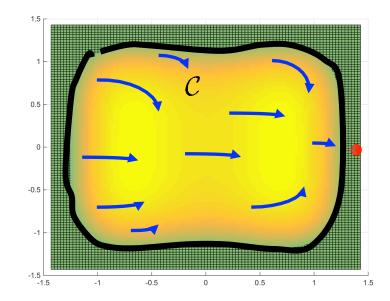
$$u^*(x) = \underset{u \in \mathbb{R}^m}{\operatorname{argmin}} \quad u^\top u + 10^2 \delta^2$$

s.t.
$$L_f h(x) + L_g h(x) u \ge -\alpha(h(x))$$

 $L_f V(x) + L_g V(x) u \le -cV(x) + \delta$

called relaxation parameter

Multi-Objective QP



Infeasible w/o relaxation

$$u^*(x) = \underset{u \in \mathbb{R}^m}{\operatorname{argmin}} \quad u^\top u + 10^2 \delta^2$$

s.t.
$$L_f h(x) + L_g h(x) u \ge -\alpha(h(x))$$

 $L_f V(x) + L_g V(x) u \le -cV(x) + \delta$

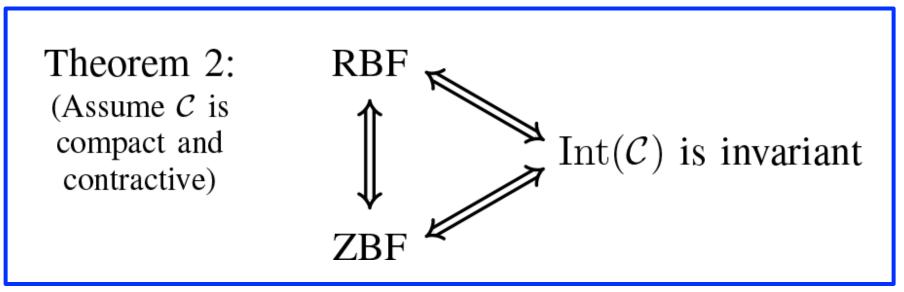
called relaxation parameter

Characterization

CPS

Robustness to disturbances

Relationships



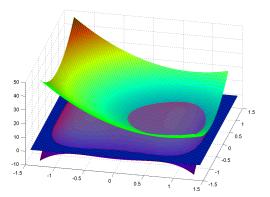
Lipschitz Continuity of QPs

Safe Set & Barrier

$$\mathcal{C} = \{ x \in \mathbb{R}^n : h(x) \ge 0 \}$$

Control System

$$\dot{x} = f(x) + g(x)u$$

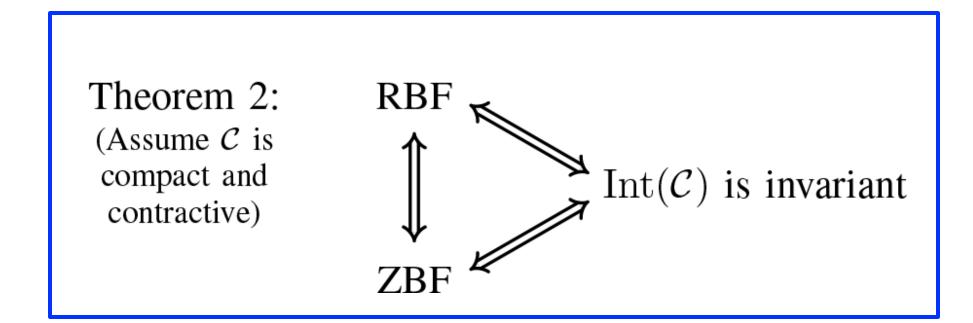


 Theorem: QPs produce Lipschitz continuous controls when

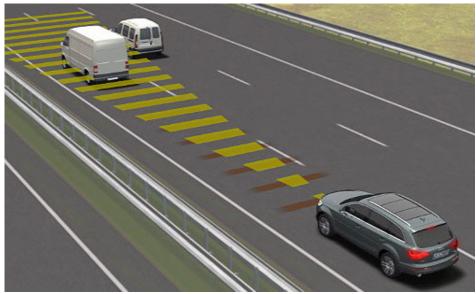
$$L_{g}h(x) = \frac{\partial h(x)}{\partial x}g(x) \neq 0, \quad x \in \mathcal{C}$$
$$\mathbf{u}^{*}(x) = \underset{\mathbf{u}=(u,\delta)\in\mathbb{R}^{m}\times\mathbb{R}}{\operatorname{argmin}} \quad \frac{1}{2}u^{\top}u + 10^{2}\delta^{2}$$
$$\text{s.t.} \quad L_{f}V(x) + L_{g}V(x)u + c_{3}V(x) - \delta \leq 0,$$
$$L_{f}h(x) + (L_{g}h(x)u) + \alpha(h(x)) \geq 0,$$

Relations

 Relationship: Under certain conditions, controlled invariance, RBF and ZBF are equivalent

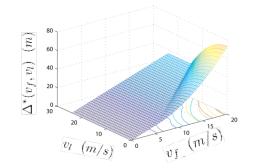


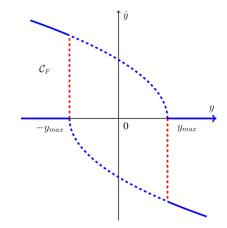
Applications



From http://www.proctorcars.com/how-does-adaptive-cruise-control-work/

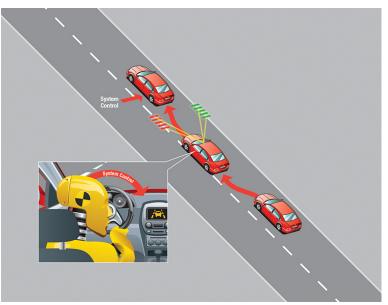
Adaptive Cruise Control



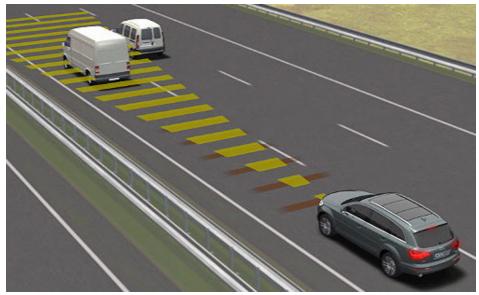


CPS

Lane Keeping

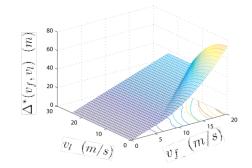


Applications

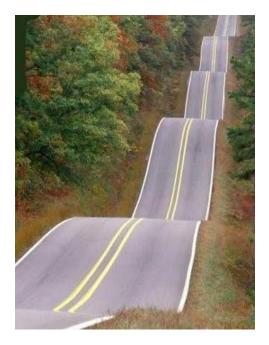


From http://www.proctorcars.com/how-does-adaptive-cruise-control-work/

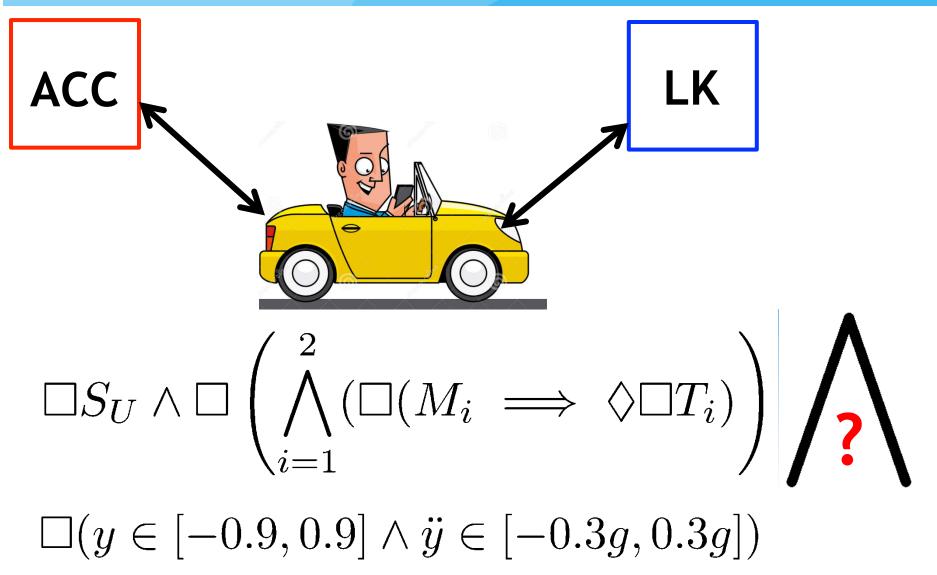
Adaptive Cruise Control



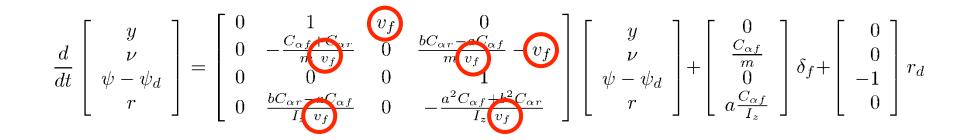
Robustness to Road Grade Uncertainty



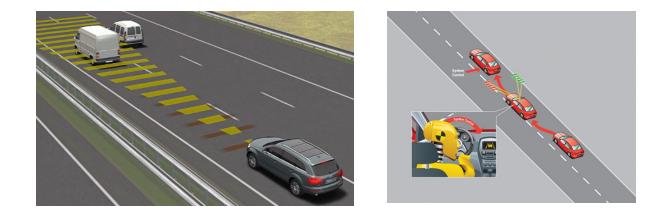
Current Challenge Composition



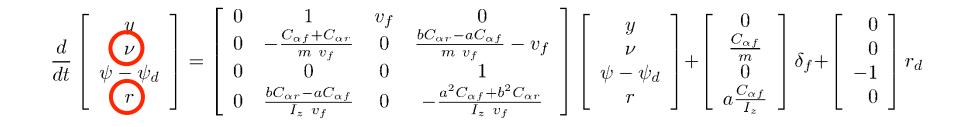
Current Challenge Composition



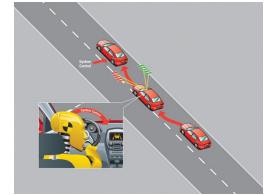
$$\frac{d}{dt} \begin{bmatrix} v_f \\ v_l \\ D \end{bmatrix} = \begin{bmatrix} -F_r/m + u \\ a_L \\ v_l - v_f \end{bmatrix}$$



Current Challenge Composition

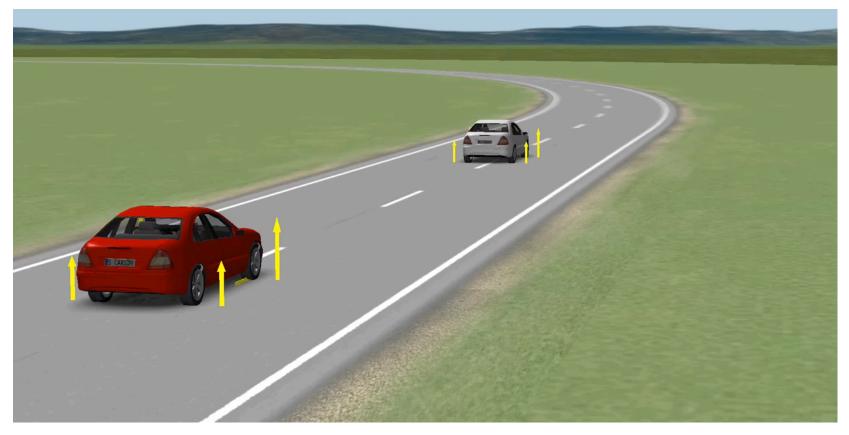


$$\frac{d}{dt} \begin{bmatrix} v_f \\ v_l \\ D \end{bmatrix} = \begin{bmatrix} -F_r/m + u/m - \nu r \\ a_L \\ v_l - v_f \end{bmatrix}$$

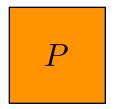


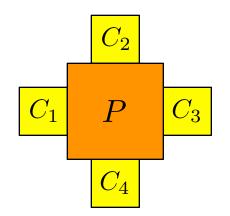
CarSim-16 DOF Model

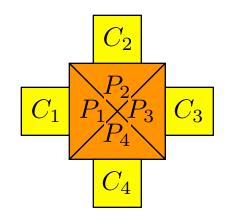
Have a start on it

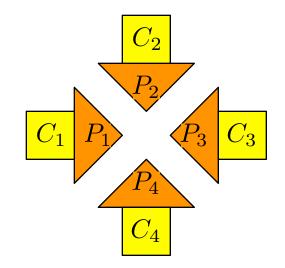


Composition

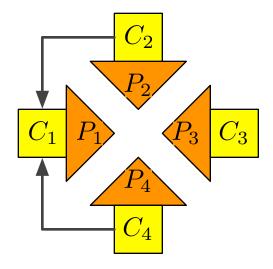








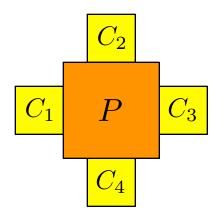
Three approaches to the compositional synthesis problem:



	[DT15]	
View	Internal	
Models	Discrete	
Key ingredient	Ranking functions	

[DT15] On Compositional Symbolic Controller Synthesis Inspired by Small-Gain Theorems F. Dallal and P. Tabuada. To appear in CDC15, 2015

Three approaches to the compositional synthesis problem:

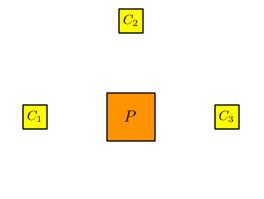


	[DT15]	[XOG15]	
View	Internal	Input-output	
Models	Discrete	Discrete/continuous	
Key ingredient	Ranking functions	Passivity indices	

[XOG15] Passivity Degradation in Discrete Control Implementations: An Approximate Bisimulation Approach, X. Xu, N. Ozav, V. Gupta, To appear in CDC15, 2015

Three approaches to the compositional synthesis problem:

CPS

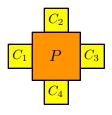


 C_4

	[DT15]	[XOG15]	
View	Internal	Input-output	
Models	Discrete	Discrete/continuous	
Key ingredient	Ranking functions	Passivity indices	

[XOG15] Passivity Degradation in Discrete Control Implementations: An Approximate Bisimulation Approach, X. Xu, N. Ozav, V. Gupta, To appear in CDC15, 2015

Three approaches to the compositional synthesis problem:

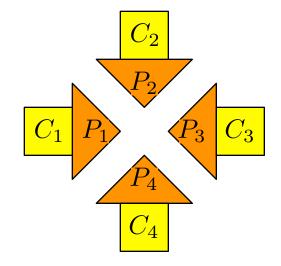


	[DT15]	[XOG15]	
View	Internal	Input-output	
Models	Discrete	Discrete/continuous	
Key ingredient	Ranking functions	Passivity indices	

[XOG15] Passivity Degradation in Discrete Control Implementations: An Approximate Bisimulation Approach, V. VII, N. Ozav, V. Cupta, To appear in CDC15, 2015

Three approaches to the compositional synthesis problem:

CPS

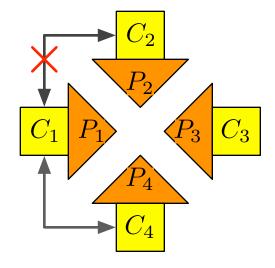


	[DT15]	[XO15]	[NO15]
View	Internal	Input-output	Internal
Models	Discrete	Discrete/continuous	Continuous
Key ingredient	Ranking functions	Passivity indices	Robust invariance

[NO15] Synthesis of separable controlled invariant sets for modular local

COMPOSING, decomposing, recomposing, ...

Three approaches to the compositional synthesis problem:



	[DT15]	[XO15]	[NO15]
View	Internal	Input-output	Internal
Models	Discrete	Discrete/continuous	Continuous
Key ingredient	Ranking functions	Passivity indices	Robust invariance

[NO15] Synthesis of separable controlled invariant sets for modular local

Formal Controller Synthesis for Bipedal Robotic Walking

Motivation

Formal Methods in Robotics

Necessary to create and certify the next generation of robotic walking behaviors:

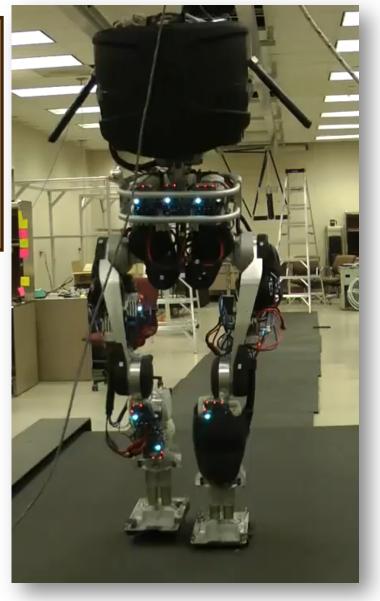
Correct by construction control... if you design it, it will work!

Challenges:

- *High dimensional*: over 50 dimensions
- Highly dynamic: traditional notions of stability are not sufficient
- *Hybrid*: Dynamics involve both discrete and continuous behavior

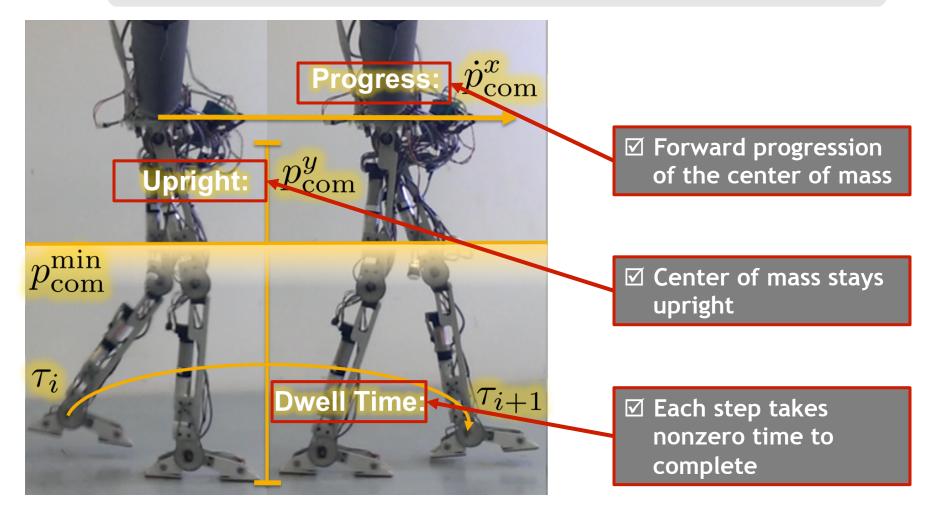
Approach:

Unify formal methods and feedback control to overcome curse of dimensionality



What is Walking?

Synthesis Objective: $\Box(P_1 \cap P_2 \cap P_3)$, *i.e.*, *render a subset* $P \subseteq P_1 \cap P_2 \cap P_3$ *invariant.*



Specifications

Synthesis Objective: $\Box(P_1 \cap P_2 \cap P_3)$, *i.e.*, *render a subset* $P \subseteq P_1 \cap P_2 \cap P_3$ *invariant.*

Maximum torque is not exceeded

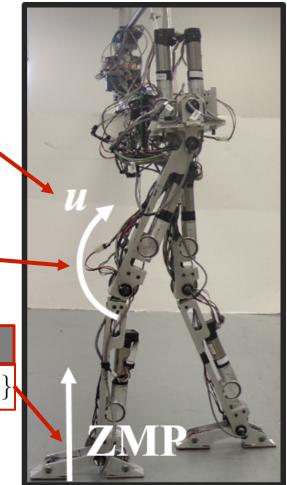
 $P_1 = \{ z \in \mathcal{D}_{\mathbf{PZ}} : |u(\vartheta_r(z), \dot{\vartheta}_r(z))| < u_{\max} \}$

Maximum speed is not exceeded

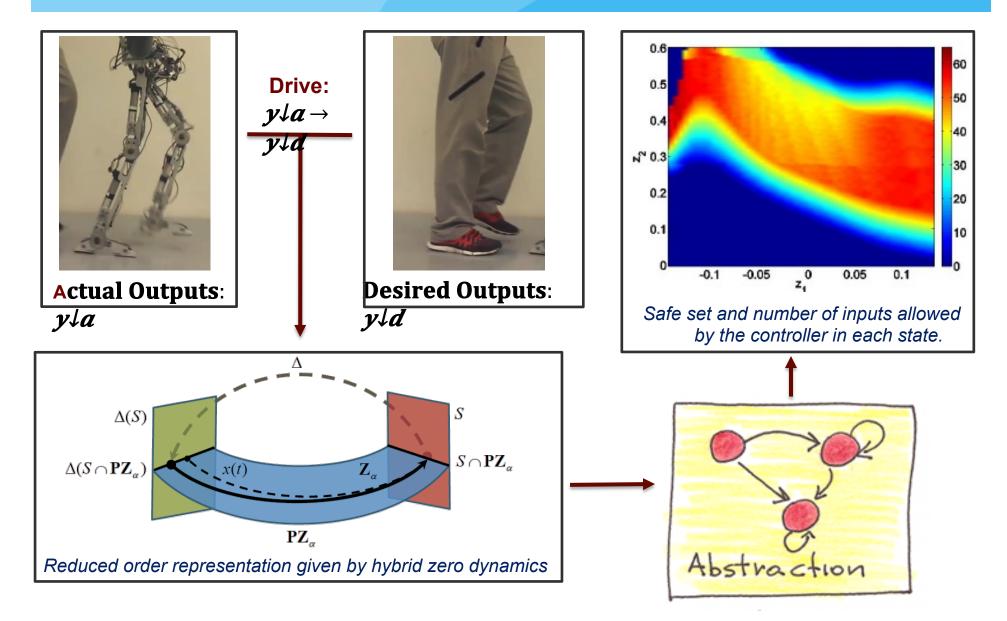
$$P_2 = \{ z \in \mathcal{D}_{\mathbf{PZ}} : |\dot{\vartheta}_r(z)| < \dot{\theta}_{\max} \}$$

Foot stays flat on the ground (ZMP stays in the foot)

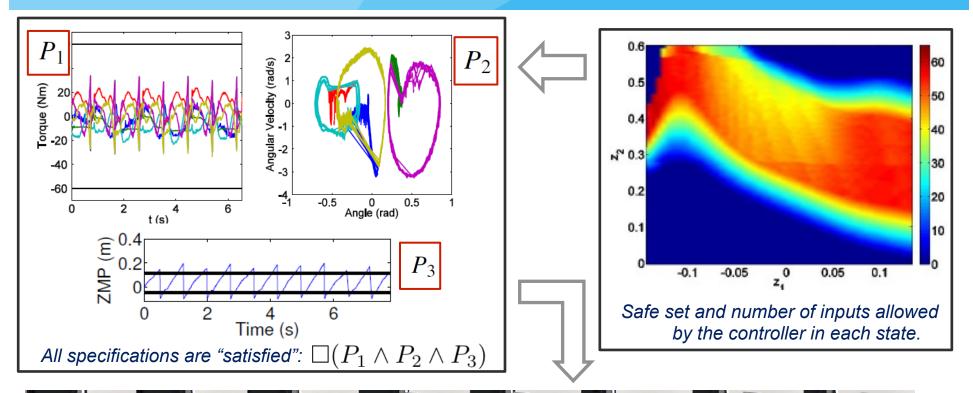
 $P_3 = \{ z \in \mathcal{D}_{\mathbf{PZ}} : A_{\mathrm{ZMP}} F_{st}(\vartheta_r(z), \dot{\vartheta}_r(z), u(\vartheta_r(z), \dot{\vartheta}_r(z))) < 0 \}$

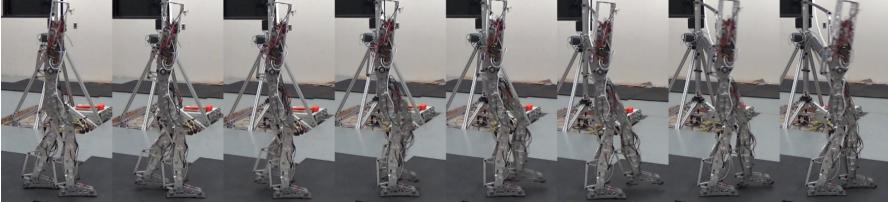


Controller Synthesis

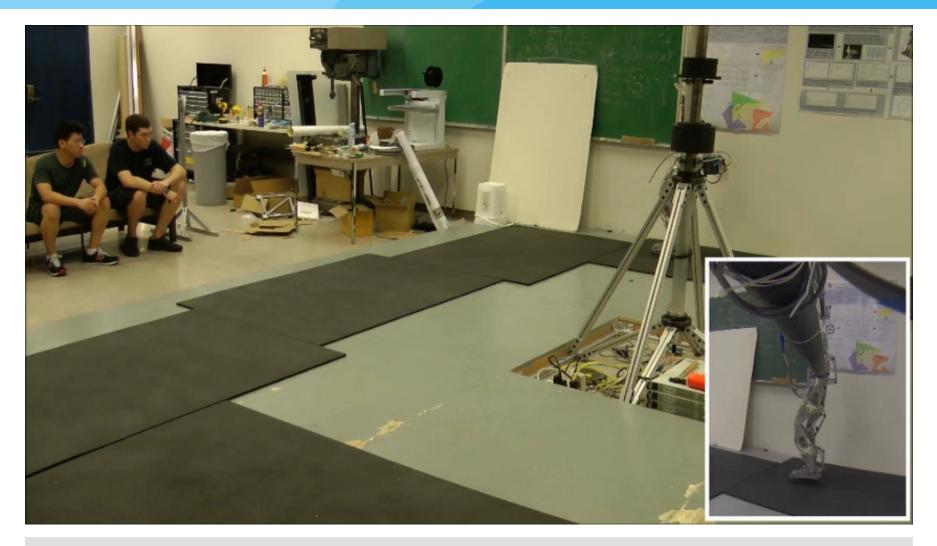


Physical Realization





Formally Synthesized Walking



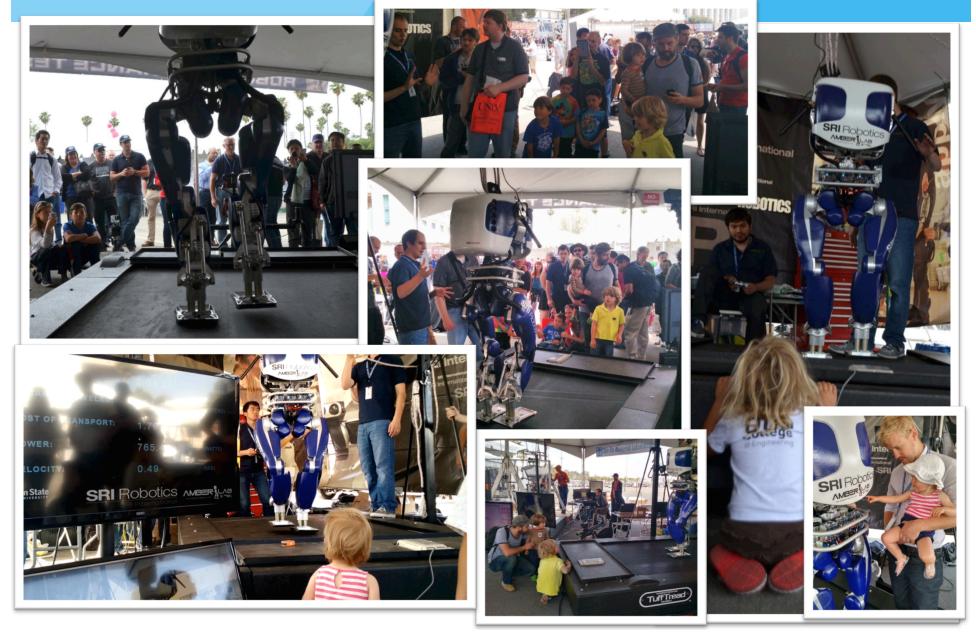
First experimental realization of formal methods on a bipedal walking robot

Future Work

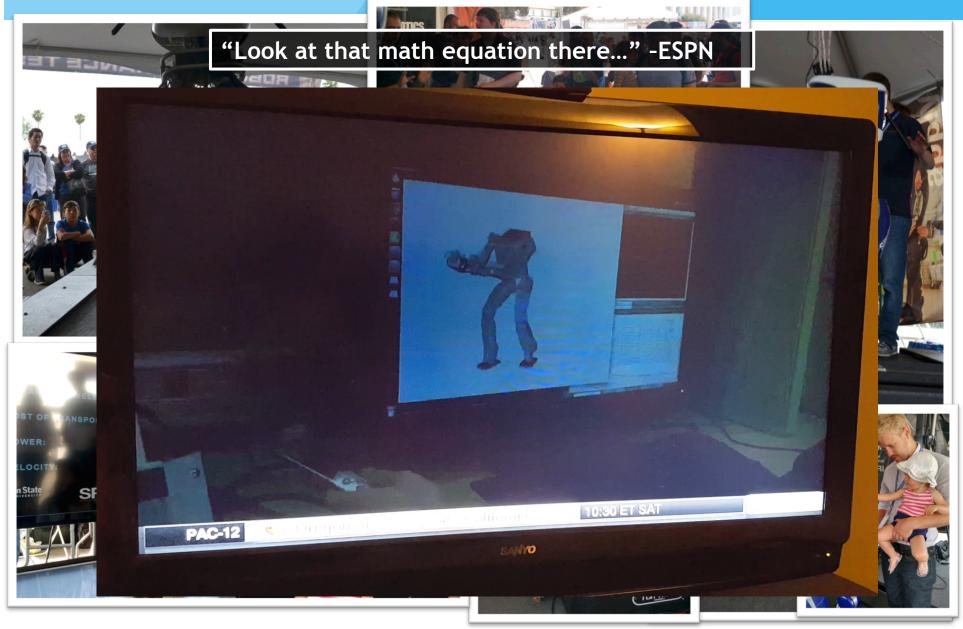
Next Steps

Implement correct-by-construction controllers experimentally on the humanoid robot DURUS

Why? Because robots are Cool...



Why? Because robots are Cool...



Sixth Annual Cyber-Physical Systems Principal Investigators' Meeting Arlington, VA – November 16-17, 2015

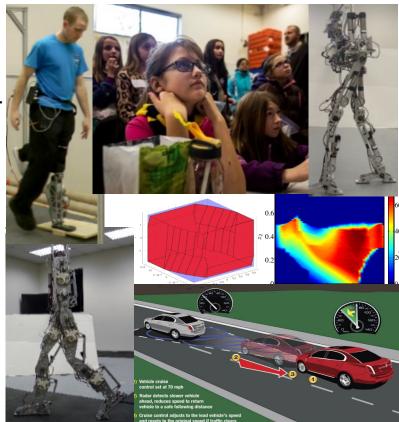
Correct-by-Design Control Software Synthesis for Highly Dynamic Systems

Challenge:

- From a formal specification, synthesize control software for highly dynamic CPS with nonlinear (hybrid) dynamics.
- Implement and evaluate on automotive and robotic hardware.

Solution:

- Two abstraction and fixedpoint methods (PESSOA and PCIS).
- Control Barrier Functions.
- Safety and performance guaranteed integration via real-time quadratic programs.



CPS Awards 1239055, 1239037, and 1239085 J.W Grizzle and H. Peng (U. Michigan), A. Ames (GaTech), H. Geyer (CMU), and P. Tabuada (UCLA)

Scientific Impact:

- Use of models vetted by industry.
- Solutions to practical engineering problems with formal safety guarantees.
- Formal methods on a 14 dim. robot model with experiments.

Broader Impact:

- Two automotive safety systems:
 - Adaptive Cruise
 Control
 - Lane Keeping
- Presented to
 - Ford, Toyota and Eaton Corp.

Use of our Work

Obtaining precise footstep placements with periodic walking controllers (HZD) was always a problem, **not any more - thanks to your fantastic creation of CBFs in your** CDC 2014 paper. Here's a video

Prof. Koushil Sreenath, CMU

Use of our Work

Obtaining precise footstep placements with periodic walking controllers (HZD) was always a problem, **not any more - thanks to your fantastic creation of CBFs** in your CDC 2014 paper. Here's a video

Prof. Koushil Sreenath, CMU

Dim. 10 model Precise Footstep Placement for Dynamic Bipedal Walking with Control Barrier Functions

Dim. 10 model

Use of our Work

Controlling robot swarms with CBFs

Prof. Magnus Egerstedt, Georgia Tech

