
✦ Problem: Brake after cone
detection, avoiding crash 
 
 
 
 
 

✦ Environment Parameters:
traffic speed, color of broken car,
orientation of broken car…

✦ Model state xM:
✦ d: distance to cones
✦ v: speed

✦ Perception: v’ is accurate, d’ is
not: use size of detection boxes to
measure distance to cones

✦ Control input: thrust

✦ Modeling: d’ ∈ hM(d, v))

✦ Policy:
✦if d’ > p1, reduce speed to p2
✦if d’ ≤ p1, use both v’ and d’

 
 
 
 

✦ Counterexample-guided Search
✦ 1st itr: easy to find counterexamples x
✦ 2nd itr: only ew counterexamples. In
all cases the color of broken car and
cones color are similar x
✦ 3rd itr: no counterexample ✓

✦ Problem

✦ Policy: 𝜋 : p1 𝜃𝛥 + p2 d

✦ Perception: 𝜃𝛥’ and v’ are
accurate, but d’ is inaccurate

✦ Specification: 
 
 
 

✦ Modeling: d’ ∈ hM(d, 𝜃𝛥, v)

✦ Counterexample-guided Search

✦ 1st itr: p1=-0.5, p2 = -0.8 𐄂
✦ VerifAI finds counterexamples

✦ 5th itr: p1=-3.93, p2 = -0.63 ✓

✦ Model for Control Design 
 
 

✦ Lane-keeping Example

✦ Simulator state xS:
✦ Agent state: x y 𝜃AV v

✦ Environment variables: Target lane on the map 
Time of day, weather, marks on the ground, etc.

✦ Model state xM: d 𝜃𝛥 v

✦ Perception output y: d’ 𝜃𝛥’

✦ Control input u: steering

✦ Common Approach: Use assume-guarantee to and  
decompose the system into perception and control  
modules. Design each component separately.

✦ Problem: Currently we can’t design provably correct  
perception modules

✦ Our Approach: Design a possibly faulty perception  
module. Afterwards, synthesize (a) assume-guarantee  
pairs for the perception module and (b) the control module

Counterexample-Guided Synthesis of 
Perception Models and Control
Shromona Ghosh*, Hadi Ravanbakhsh*, Sanjit A. Seshia  

University of California  
Berkeley

AbstractAbstract
Goal: State of the art ML-based perception systems are still prone to errors.
We need to design control modules for autonomous systems which are robust
to perception errors.

Contributions:

✦ A novel counterexample-guided method to synthesize controllers robust to
perception errors

✦ Data-driven inference of simple models of complex perception modules,
including ML-based perception

✦ Two case studies:
✦ Lane-keeping with a classical vision-based perception module
✦ Automatic braking with a neural network-based perception module

Inferring Sound Models

Approach

Problem

Assume-Guarantee through Modeling

Case Study: Lane-keeping

Acknowledgement
This work is supported in part by NSF grants CPS-1545126 (VeHICaL), CCF-1837132,
by the DARPA Assured Autonomy grant, and by Berkeley Deep Drive.

Agent

World

Perception

Control

assume

guarantee

✦ Simulation-based Verification: Use high fidelity simulators for systematic
safety analysis of autonomous agent in complex environments:

✦ Requirements: Define all possible scenarios mathematically, e.g. Scenic

✦ Simulator: We have access to  
internal state of the simulator and  
can enforce environment constraints  
by initializing the internal state.

✦ Verification: We have a verification  
oracle that can systematically tests the  
closed-loop system and finds counterexamples. E.g. VerifAI

✦ Problem: Given a parameterized control policy, and a faulty perception
module, find a set of parameters s.t. the closed-loop system in the simulator
remains safe w.r.t. the requirements.

𝜃AV

𝜃R

x

y
𝜃𝛥

d

v

✦ Infer hM (and fM) from simulator traces:
✦ Extract (xM, y) from traces
✦ Cluster data
✦ Learn linear model for each cluster
✦ Use a prior model
✦ Aggregate all models
✦ Model over-approximates the simulator

Reachable set in model
Traces of system

(projected into model domain)

xM

t

Counter-example Guided Search

Control Synthesis Policy

No Solution 𐄂

Inferred Model

Learning
DataInit Model

Verification

Counterexamples

No Counterexample ✓
Gradient-based

Search
VerifAI

Clustered-based
Model

Case Study: Automatic Braking

4s

Ego
Cone

Cone
Cone

✦ Simulator Traces
✦ y(i) = hS(xS(i))

✦ u(i) = 𝛑(y(i))

✦ xS(i+1) = fS (xS(i), u(i))

✦ Model Traces
✦ y(i) = hM(xM(i))

✦ u(i) = 𝛑(y(i))

✦ xM(i+1) = fM (xM(i), u(i))

Model
Environment Perception

u

𝛑 𝛑
u yy

Renderer xS
xM

yi

xM

2

1

0

0

4

0

-4

-8

d’-d

d𝜃𝛥

reduce speedoptimal brake

cones detected  
for the first time

v

p2

p1

d

Trust value of d’

upper-bound on possible values
lower-bound on possible values
infinite is a possible value

d’

d’

d’ = d

d’ = p1

