
✦ Problem: Brake after cone 
detection, avoiding crash 
 
 
 
 
 

✦ Environment Parameters: 
traffic speed, color of broken car, 
orientation of broken car… 

✦ Model state xM: 
✦ d: distance to cones 
✦ v: speed 

✦ Perception: v’ is accurate, d’ is 
not: use size of detection boxes to 
measure distance to cones 

✦ Control input: thrust 

✦ Modeling: d’ ∈ hM(d, v)) 

✦ Policy: 
✦if d’ > p1, reduce speed to p2 
✦if d’ ≤ p1, use both v’ and d’ 

 
 
 
 

✦ Counterexample-guided Search
✦ 1st itr: easy to find counterexamples  x 
✦ 2nd itr: only ew counterexamples. In 
all cases the color of broken car and 
cones color are similar x 
✦ 3rd itr: no counterexample ✓

✦ Problem

✦ Policy: 𝜋 : p1 𝜃𝛥 + p2 d 

✦ Perception: 𝜃𝛥’ and v’ are 
accurate, but d’ is inaccurate 

✦ Specification: 
 
 
 

✦ Modeling: d’ ∈ hM(d, 𝜃𝛥, v) 

✦ Counterexample-guided Search

✦ 1st itr: p1=-0.5, p2 = -0.8 𐄂 
✦ VerifAI finds counterexamples   

✦  5th itr: p1=-3.93, p2 = -0.63 ✓

✦ Model for Control Design 
 
 

✦ Lane-keeping Example

✦ Simulator state xS:
✦ Agent state: x   y   𝜃AV   v

✦ Environment variables: Target lane on the map 
Time of day, weather, marks on the ground, etc.

✦ Model state xM: d   𝜃𝛥   v

✦ Perception output y: d’  𝜃𝛥’

✦ Control input u: steering

✦ Common Approach: Use assume-guarantee to and  
decompose the system into perception and control  
modules. Design each component separately. 

✦ Problem: Currently we can’t design provably correct  
perception modules 

✦ Our Approach: Design a possibly faulty perception  
module. Afterwards, synthesize (a) assume-guarantee  
pairs for the perception module and (b) the control module
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AbstractAbstract
Goal: State of the art ML-based perception systems are still prone to errors. 
We need to design control modules for autonomous systems which are robust 
to perception errors. 

Contributions:  

✦ A novel counterexample-guided method to synthesize controllers robust to 
perception errors 

✦ Data-driven inference of simple models of complex perception modules, 
including ML-based perception

✦ Two case studies: 
✦ Lane-keeping with a classical vision-based perception module 
✦ Automatic braking with a neural network-based perception module
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✦ Simulation-based Verification: Use high fidelity simulators for systematic 
safety analysis of autonomous agent in complex environments: 

✦ Requirements: Define all possible scenarios mathematically, e.g. Scenic

✦ Simulator: We have access to  
internal state of the simulator and  
can enforce environment  constraints  
by initializing the internal state. 

✦ Verification: We have a verification  
oracle that can systematically tests the  
closed-loop system and finds counterexamples. E.g. VerifAI

✦ Problem: Given a parameterized control policy, and a faulty perception 
module, find a set of parameters s.t. the closed-loop system in the simulator 
remains safe w.r.t. the requirements.  
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✦ Infer hM (and fM) from simulator traces:
✦ Extract (xM, y) from traces 
✦ Cluster data 
✦ Learn linear model for each cluster 
✦ Use a prior model 
✦ Aggregate all models 
✦ Model over-approximates the simulator
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Case Study: Automatic Braking
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✦ Simulator Traces
✦ y(i) = hS(xS(i)) 

✦ u(i) = 𝛑(y(i)) 

✦ xS(i+1) = fS (xS(i), u(i)) 

✦ Model Traces 
✦ y(i) = hM(xM(i)) 

✦ u(i) = 𝛑(y(i)) 

✦ xM(i+1) = fM (xM(i), u(i))
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