Counterexample-Guided Synthesis of o
Perception Models and Control T arkatey

Shromona Ghosh*, Hadi Ravanbakhsh*, Sanjit A. Seshia

Abstract Inferring Sound Models
Goal: State of the art ML-based perception systems are still prone to errors. 4+ Infer hy (and fu) from simulator traces: byi
We need to design control modules for autonomous systems which are robust 4+ Extract (xm, y) from traces
to perception errors. 4+ Cluster data

+ Learn linear model for each cluster
4+ Use a prior model
+ A novel counterexample-guided method to synthesize controllers robust to + Aggregate all models

perception errors 4+ Model over-approximates the simulator

Contributions:

4+ Data-driven inference of simple models of complex perception modules, Xm

. . . Reachable set in model
including ML-based perception Traces of system
t (projected into model domain)

4+ Two case studies: >
4+ Lane-keeping with a classical vision-based perception module Counter-example Guided Search
4+ Automatic braking with a neural network-based perception module P
Approach Init Model — Learning < Data .
4+ Common Approach: Use assume-guarantee to and Clustered-based
decompose tthsystem into perceptiog and control World) inferred Model ’ I Counterexamples
modules. Design each component separately. Agent 1} Control Synthesis o - Verification

4+ Problem: Currently we can’t design provably correct assume Gradient-based l
perception modules M
Search N

Perception No Solution x o Counterexample v

4+ Our Approach: Design a possibly faulty perception

module. Afterwards, synthesize (a) assume-guarantee guarantee Case Study: Lane-keeping
pairs for the perception module and (b) the control module Control + Problem + Counterexample-guided Search
Problem 4+ Policy: 7 :p1 6, + p2d + istitr: p1=-0.5, p» = -0.8 x
.)) 4+ VerifAl finds counterexamples
+ Simulation-based Verification: Use high fidelity simulators for systematic + Perception: 6," and v’ are + 5th itr: pr=-3.93, ps = 063 ¥
safety analysis of autonomous agent in complex environments: accurate, but d’ is inaccurate
7
4+ Requirements: Define all possible scenarios mathematically, e.g. Scenic 4+ Specification: |

1
l 4

J [odd
AT

4+ Simulator: We have access to
internal state of the simulator and
can enforce environment constraints
by initializing the internal state.

4+ Verification: We have a verification /
oracle that can systematically tests the |8)
closed-loop system and finds counterexamples. E.g. VerifAl

4+ Modeling: d’ € hu(d, 8,4, v)
Case Study: Automatic Braking

4+ Problem: Brake after cone 4+ Policy:
detection, avoiding crash +if d’ > p1, reduce speed to p2
+if d’ <p1, use both v/ and d’

cones detected—.;
for the first time '

4+ Problem: Given a parameterized control policy, and a faulty perception
module, find a set of parameters s.t. the closed-loop system in the simulator
remains safe w.r.t. the requirements.

Assume-Guarantee through Modeling

. N .
4+ Model for Control Design P ; ; g
Envi Rend P) Model S li01 | >
nvironment enderer erception Xs XM) ‘optimal e educe specd >
u y u y 4 Environment Parameters:
" - traffic speed, color of broken car, + Counterexample-guided Search
orientation of broken car. .. 4+ 1stitr: easy to find counterexamples x
4+ Lane-keeping Example 4+ 2nd itr: only ew counterexamples. In
+ Simul . 4+ Model state xu: all cases the color of broken car and
imulator state Xs» <4 d: distance to cones cones color are similar x
4+ Agentstate: x y 6Oav v + v: speed + 3rd itr: no counterexample v

4+ Environment variables: Target lane on the map
Time of day, weather, marks on the ground, etc.

4+ Model state xm: d 04 v

+ Perception: V' is accurate, d’is *|
not: use size of detection boxesto ™|
measure distance to cones d

+ Perception outputy: d” 04 4+ Control input: thrust

4+ Control input u: steering

/ 4+ Modeling: d’ € hu(d, v)) e
4+ Simulator Traces 4+ Model Traces d’

+ y(i) = hs(xs(i)) * () = hmtxu(@) Acknowledgement

+ u(i) = m(y(i)) + u(i) = m(y(i) . . .
_)))))) This work is supported in part by NSF grants CPS-1545126 (VeHICal), CCF-1837132,
+ xs(i+1) = fs (xs(i), u(i) + xm(i+T) = Ty Oau(), u(i) by the DARPA Assured Autonomy grant, and by Berkeley Deep Drive.

