
Towards a Formally Verified Process
Goal:

Critical control software is becoming increasingly
complex and certification standards, high. In this context
it becomes necessary to drive certification costs down
while improving safety assurance. We provide a
development framework which draws from control
theory concepts and formal analysis to offer a credible,
automated control software generation tool.

Perspectives

- The feasibility of a credible autocoding toolchain has been
demonstrated through the creation of various prototype
tools, applied to small subset of system and properties

- Perspective future research directions include:

- Using domain specific knowledge from other fields (e.g.
optimization) to produce verifiable safety-critical code

- Expanding the current work to account for more
properties and more complex systems

- Analysis of liveness property (beyond termination)

D. IKOS: scalable abstract interpretation
- Based on Abstract Interpretation ⟹ no false negatives

- Customizable for various classes of software ⟹ low false
positive rate

- Supports many dialects of C/C++ (based on GCC and LLVM)

- Scales to 270+ KLOC code bases

- Runs analyses in minutes

Credible Autocoding and Verification of Embedded Software (CrAVES)

Floating-Point Analysis
Issues:

Annotated proofs verified in real
semantics (Gene-Check)

But we also need to verify the
same proof in floating-point
semantics.

Specialized
Abstract

Interpreter for
Floating-point

semantics
(fluctuat)

C Code

ACSL
Annotations

Proofs as C Programs

Ellipsoid Inclusion

S Procedure

Affine Transformation

A. CoCoSim: Integrated analysis for Simulink

B. Modular compilation and validation

Simulink

Binary

C Code

Control Semantics:
stability, bounded-ness,
transient performances,

stability margins, etc.

ACSL Annotations
(Hoare Triples)

Manual

Both

Automatic

PVS Theories +
PVS Proofs of high level

properties

Credible Autocoder

Certified Compiler

Static Analyzer

Scalable IKOS check for
runtime errors (index out of

bound, overflow…)

Lustre Code

A

B

D

C

Educational Outreach: Collaboration with
local High School in NASA’s USLI

- We used the GeneAuto translation tool, which offers compilation of
various graphical modeling languages to C and ADA.

- We wrote an extension of the tool, which adds custom blocks to a
diagram that express a stability proof

- It then translates the model, along with those new blocks, into C
code, annotated with an equivalent of the proof in ACSL.

C. Credible Autocoder with Verification: Gene-Auto
extended with the translation and generation of control

semantics, Gene-Check for their verification

Gene-Auto extended:
- Translates ellipsoid synchronous

observers(to express the stability of
the closed-loop system) to ACSL
function contracts.

- Analyses the generated code for
forward propagation of the inserted
ellipsoid invariants.

- Generates ellipsoid invariants for
every statements of the generated
code through forward propagation

Gene-check:
- uses frama-C (+ custom plugin) on

the annotated code to generate the
verification conditions (VC) for PVS
(=theorems to be proven).

- Automatically discharges proof
obligations, resulting in a
replayable proof that the
annotations are correct

Pr. Eric Feron (co-PI), Dr. Romain Jobredeaux, Dr. Timothy Wang, Georgia Institute of Technology, USA

Dr. Temesghen Kahsai (Co-PI), Dr. Arnaud Dieumegard, Dr. Caterina Urban, Carnegie Mellon University, USA

Dr. Pierre-Loïc Garoche, ONERA, France

Pr. Marc Pantel, ENSEEIHT, France

PVS

ACSL

• NASA’s University Student Launch Initiative is
a Rocket Launch Contest

• Undergraduate students work in partnership
with Atlanta public Douglass High school to
build a rocket and an autonomous ground
support for launch

• Introduce minority students interested in
engineering to software issues in cyber-
physical systems, and STEM fields in general
(meteorology, mechanical engineering, rocket
mechanics).

• CoCoSim: Compiler (to Lustre) + Analyzer of Simulink models
• Modular compiler that preserves hierarchical structure of Simulink.
• Safety properties are encoded as synchronous observers (or asserts).
• Verification results are reported back to be simulated in Simulink
• At Lustre level verification performed by PKind and Zustre.
• PKind : Parallel SMT-based model checker.
• Zustre : Property-directed reachability based verifier for Lustre.

- A twin-engine tube and wings configuration aircraft
simulation

- Intended as an experimental platform for controls
- Autopilot model contains approx. 5700 Simulink blocks
- 20 safety properties derived from Federal Aviation
Regulations and Boeing 737 pilot training manual
- Safety analysis done via CoCoSim

E
Liveness Analysis using
SeaHorn (currently only

termination and non-
termination)

Application: Transport Class Model (TCM)

E. Liveness Analysis with SeaHorn

C Code SeaHorn Model Checker

Currently checks for termination properties
It terminates
+ ranking function

It does not terminate
+ counterexample

