Intelligent Motion ILLINOIS

Summary

- Collaborative project between UIUC Engineering (Hauser) and Duke School of Nursing (Shaw) to develop trainable supervisory control interfaces for tele-nursing robots
- Direct applications: nursing in quarantine areas; infectious diseases, immunocompromised patients
- UIUC: fabricating the TRINA 2.0 hardware platform, devising semi-autonomous primitive tasks, and trainable UIs
- Duke: user studies with RNs (experts) customizing the UI for nursing students (novices) in nursing tasks

Prior work

Tele-Robotic Intelligent Nursing Assistant (TRINA)

• Developed with NSF RAPID funding in response to 2014 Ebola outbreak^[1]

Direct teleoperation: 19/26 nursing tasks feasible, but 50-200x slower than human nurse

Automated: Personnel Protective Equipment (PPE) donning and doffing via PbD^[2]

Customizing Semi-Autonomous Nursing Robots using Human Expertise

Yifan Zhu, Patrick Naughton, Alexander Smith, Ryan Shaw, and Kris Hauser

Primitive tasks

Navigation, picking, placing, button pressing, wiping ^[3], unscrewing^[3], auscultation^[4]

Anatomical model / auscultation locations registered to patient scan

Bayesian optimization to adjust sensing locations to identify high-quality sounds [4]

- Hierarchical task customization • Design and fabrication of TRINA 2.0 involving conditions, loops • Implementation of reliable (95%)
- autonomous primitives
- Human-interpretable database of objects, locations, poses, motions

Project Vision

This year: improving pick and place reliability, articulated object manipulation, wiping => Intelligent UI, testing w/ RNs at Duke

Intelligent UIs: predict k-most likely actions from expert teleoperator demonstrations Open-world perception: variable action parameter domains

>90% accuracy in erasing, unscrewing, pick and place

Technical Challenges

- Contextual, most-likely task inference
- Implementation and testing on mobile GUI

[1] Z. Li, P. Moran, C. Dong, R. Shaw, and K. Hauser. *Development of a Tele-Nursing* Mobile Manipulator for Remote Care-giving in Quarantine Areas. ICRA, 2017 [2] T. Lu, H. Bader, and K. Hauser. *The Design and Doffing of Personal Protective Equipment for Healthcare Robots*. Military Health Systems Research Symposium (MHSRS), August 2018. [3] P. Naughton and K. Hauser. Structured Action Prediction for Teleoperation in *Open Worlds,* IEEE RA-L, 2022 [4] Y. Zhu, A. Smith and K. Hauser, Automated Heart and Lung Auscultation in Robotic Physical Examinations, IEEE RA-L, 2022

Duke University School of Nursing

Grant #1830366/2025782

Current progress

TRINA 2.0 complete. Sensors, 2D and 3D SLAM, VR input

2022 thrust Testing Intelligent UI Usability refinement ANA Avatar XPRIZE finals

UIUC TRINA group at XPRIZE Semifinals

References