Duke University School of Nursing

nke

Summary

- Collaborative project between Duke engineering and nursing schools (began 9/1/2018)
- **Goal**: enable human domain experts to train a tele-nursing robot to operate semi-autonomously
- Develop capable mobile manipulator TRINA 2.0 and primitive manipulation / locomotion tasks
- *Teaching UI* to catalog objects, locations, compound tasks
- Smart UI presents user with common tasks and parameters in spatial / procedural context
- Tested on nursing students (novices) with UI trained by RNs (experts)

TRINA 1.0

• TRINA 1.0 developed with NSF RAPID seed funding in response to Ebola crisis

nurse ab 1.0 in teaching TRINA

Direct teleoperation solves ~65% of nursing tasks, but very slow (50x slower than human) [1]

console itor Ope

NRI: INT: Customizing Semi-Autonomous Nursing Robots using Human Expertise

Kris Hauser and Ryan Shaw

Smart UI framework

Expert annotation of objects, places, poses, and compound tasks subsequently used in minimalist smart UI

Primitive tasks

Reliable nursing skills will be development in consultation with nurses, including:

Navigation and body positioning Grasping, nonprehensile manipulation, compliant manipulation Instrument and tool operation

NSF #1830366

Current progress

Personal protective equipment design and self-doffing [2]

In-hand 3D object scanning [3]

Reactive collision free navigation

References

[1] Z. Li, P. Moran, C. Dong, R. Shaw, and K. Hauser. Development of a Tele-Nursing Mobile Manipulator for Remote Care-giving in Quarantine Areas. ICRA 2017.

[2] T. Lu, H. Bader, and K. Hauser. The Design and Doffing of Personal Protective Equipment for Healthcare Robots. MHSRS 2018. [3] F. Wang and K. Hauser. In-hand Object Scanning via RGB-D Video Segmentation. In submission.