Cyber-Security of GPS

Peter Volgyesi

How GPS Works

... at all

Time - distance measurement w/ speed of light Power and noise - 25 W from 20,000km

Shared frequency - 32 operational satellites

Doppler effect - 5-10 kHz, changing even for stationary receivers

History

- 1957: **Sputnik**
 - locate the satellite using known ground receiver positions
- Military need: nuclear submarines (SLBM) Polaris
- 1960: **TRANSIT** Doppler-shift curve fitting
 - LEO orbits
 - fewer satellites (one required, only for a fix)
 - One fix / hour
- 1964: **Timation** time of flight
 - atomic clocks
- 1978: first GPS satellites launched
 - 1995: fully operational

Motivation - shooter localization

Earth orbits

- 32 satellites
- 6 orbital planes
- MEO: 20,000 km (12,500 mi)
- Lifetime: ~ 10 years
- Atomic clocks
- Ground stations (MCS in Colorado)
- Music box: time and trajectory information

A third measurement narrows down our position to just two points

Errors, more satellites, previous results:

Do not solve, but optimize...

$$(x_1 - \mathbf{x})^2 + (y_1 - \mathbf{y})^2 + (z_1 - \mathbf{z})^2 = d_1^2$$

 $(x_2 - \mathbf{x})^2 + (y_2 - \mathbf{y})^2 + (z_2 - \mathbf{z})^2 = d_2^2$
 $(x_3 - \mathbf{x})^2 + (y_3 - \mathbf{y})^2 + (z_3 - \mathbf{z})^2 = d_3^2$

Trilateration - wish it were so easy...

Receiver time synchronization

Range measurements (d_i) @ speed of light

300,000,000 meters / second

1 meter ~ 3 nanoseconds

Bad news:

- Crystal oscillators: 50ppm
 - 50 us within a second (15km)
 - 1-2 minutes within a month
- Atomic clocks
 - Expensive
 - Big
 - Cannot buy them on Amazon.com

Receiver time synchronization

- Solution: accept and embrace the problem
- Use the receiver clock as bad it is for ranging:

PSEUDORANGE

- Additional unknown: receiver time (error)
 - One more (4) minimum measurements / eqs
 - Difference in time of arrival (DToA)
- All ranging (d_i) should happen at the same time

Weak Signal

- Transmit power (solar panels): 25.6W
- 13 dBi Antenna gain: 500W (57dBm)
- Free space loss (20,000km): 182dB
- At the receiver: ~ 10⁻¹⁶ W (130 dBm)
- Thermal noise floor (bandwidth, temp): ~
 10⁻¹⁴ W (110dBm)
- SNR: -20dB (1:100 power)!

$$C = B \log_2 \left(1 + \frac{S}{N} \right)$$

Spectrum spreading

- Redundancy speak slowly + correlation
- Pseudorandom sequences: Gold code

Weak-signal + multiple GPS satellites

Data Packets

Source: Jie Liu: GPS Fundamentals

+/- 5kHz (stationary)

Receiver needs to find and track:

delay and frequency

Inside the GPS Receiver

Vulnerabilities - Jamming

- Easy and cheap
 - Random powerful transmission
- Dangerous
 - Examples critical infrastruct

- Easy to detect and localize
- Federal crime
- Defense options
 - Directional antennae
 - Sophisticated RF frontends

Vulnerabilities - Spoofing

- Not that easy
 - should override existing satellite signals (all of them)
 - needs consistent signal streams (at receiver)
 - might require multiple frequencies
- Simpler options
 - Replay attack
 - SBAS / augmentation attack
- Dangerous and Illegal
- Defense
 - Additional location sources (WiFi, Cellular)

