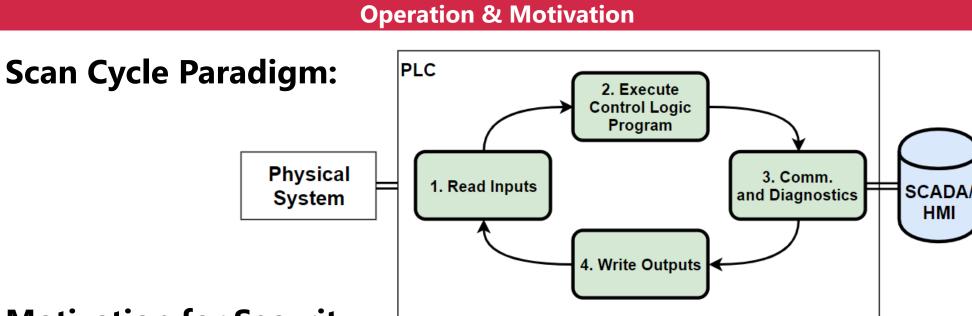


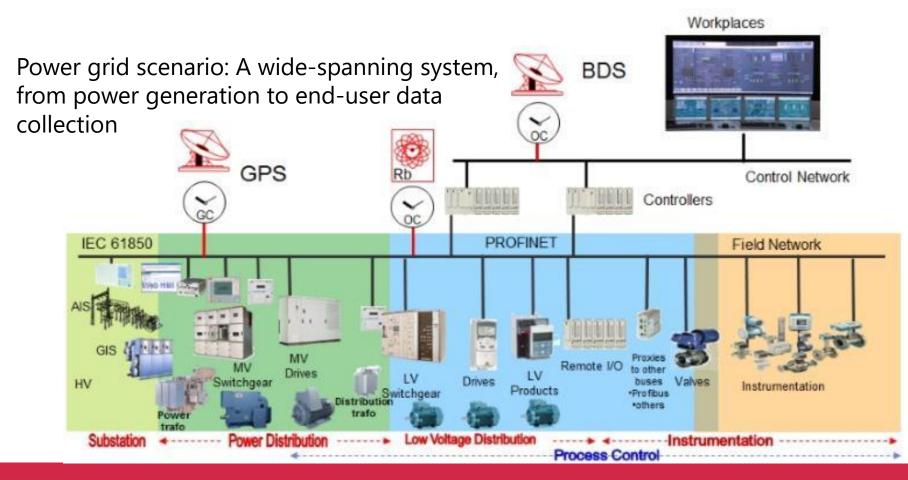
•

		17 - A11 18 - A12	10 - 50V)
SIEM	ENS		
		1	
		N.	1
		ESC	OK
	1 12/2480	Station and state	NA DE ANN
	and a sub-	10	

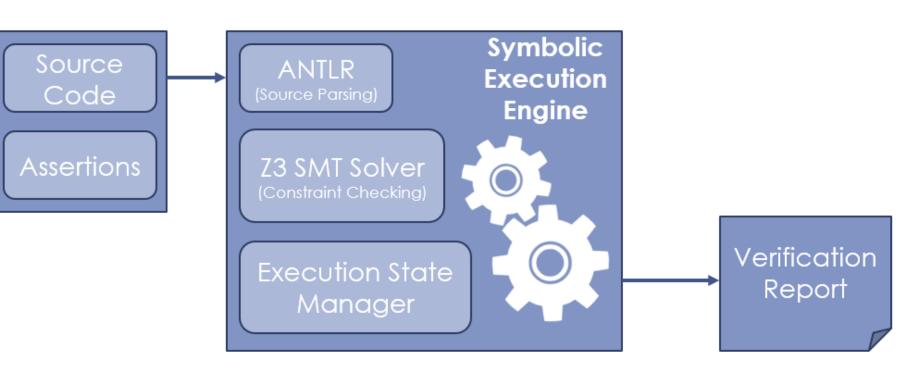

Introduction and Background

Programmable Logic Controllers (PLCs):

- Part of industrial control systems that manage critical infrastructure such as:
 - Power Systems
 - Water treatment
 - Automated Manufacturing/Refining
 - Elevators and Traffic Lights


Background:

- PLCs are flexible tools for industrial automation
- Required to have high availability and reliability
- Security policies and enforcement are lacking


Motivation for Security

- PLCs are widely deployed in complex systems with large attack surfaces
- Legacy infrastructure and poor security practices leave systems vulnerable
- Growing trend of smart connected devices to enable greater functionality

Triton • Step 7 request code block from PLC

- Newer PLC security measures encrypt communication between the SCADA and PLC
- Modify symbolic execution to be applied on source code
- Developing language-specific grammars •
- Can assist with debugging during program development

Cyber Physical Systems Security:

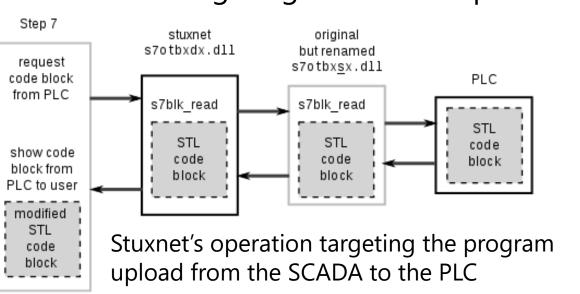
Protecting Programmable Logic Controllers

Matthew Chan, Prof. Saman Zonouz *Work supported by the NSF under grant CNS-1703782*

Previous Work

Existing Exploits

• The most (in)famous: **Stuxnet worm**

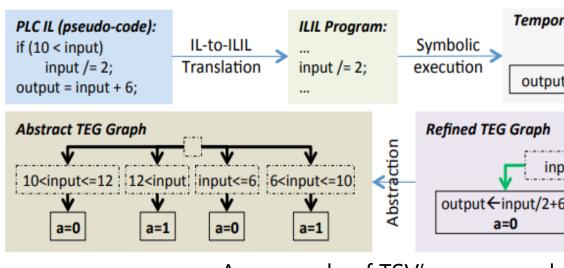

- Targeted uranium refinery centrifuges
- Infiltrated PLCs through SCADA control software

CrashOverride

• A sophisticated malware discovered in 2016 targeting a Ukrainian power substation

• **Harvey** [1]

- A proof of concept PLC rootkit with physics awareness
- a malware targeting Middle East power stations

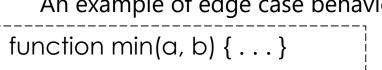

Existing External Defenses

• WeaselBoard [3]

- External board for process monitoring
- Uses traffic analysis to detect malicious activity

• Trusted Safety Verifier (TSV) [2]

- Bump-in-the-wire solution for checking PLC programs as they are uploaded
- Transforms assembly level PLC code (IL) into an Intermediate Language (ILIL)
- Performs a symbolic analysis to check that safety conditions are maintained



Current Work

TSV Extension: Symbolic Execution on Source

Testing

- OSCAT, a base library of PLC functions
- More complex controller code to analyze scalability
 - PLC controlled robotic arm example


```
// formal specification
ASSERT( min \leq a \&\& \min \leq b
&& (min = a || min = b)
```

References:

t←input/2+6		LTL_SPEC: G !a a:= (output>12)	
0/2010/2+6; 0/2015; 0/2015 0/	·····	t<=6 output←input+6 a=1	ج

An example of TSV's program checking control flow

An example of edge case behavior where symbolic execution excels

function min(a, b) {
if (a < b) { return a; }
else if (a = 100) { return -1; }
else { return b; }
}

physics! Attacking PLCs with physical model aware rootkit." em Security Symposium, San Diego, CA, USA. 2017.
fety Verifier for Process Controller Code." NDSS. Vol. 14. 2014.
labnews/articles/2016/04-03/weaselboard.html
C_62439-3_Clocks_in_Industrial_Automation_170208_HK.jpg
emens_Logo.jpg
uxnet_modifying_plc.svg
shOverride-01.pdf